RESUMO
Premise: The prompt categorization of Phytophthora infestans isolates into described clonal lineages is a key tool for the management of its associated disease, potato late blight. New isolates of this pathogen are currently classified by comparing their microsatellite genotypes with characterized clonal lineages, but an automated classification tool would greatly improve this process. Here, we developed a flexible machine learning-based classifier for P. infestans genotypes. Methods: The performance of different machine learning algorithms in classifying P. infestans genotypes into its clonal lineages was preliminarily evaluated with decreasing amounts of training data. The four best algorithms were then evaluated using all collected genotypes. Results: mlpML, cforest, nnet, and AdaBag performed best in the preliminary test, correctly classifying almost 100% of the genotypes. AdaBag performed significantly better than the others when tested using the complete data set (Tukey HSD P < 0.001). This algorithm was then implemented in a web application for the automated classification of P. infestans genotypes, which is freely available at https://github.com/cpatarroyo/genotypeclas. Discussion: We developed a gradient boosting-based tool to automatically classify P. infestans genotypes into its clonal lineages. This could become a valuable resource for the prompt identification of clonal lineages spreading into new regions.
RESUMO
The evolution of new variants of plant pathogens is one of the biggest challenges to controlling and managing plant diseases. Of the forces driving these evolutionary processes, global migration events are particularly important for widely distributed diseases such as potato late blight, caused by the oomycete Phytophthora infestans. However, little is known about its migration routes outside North America and Europe. This work used genotypic data from population studies to elucidate the migration history originating the Colombian P. infestans population. For this purpose, a dataset of 1,706 P. infestans genotypes was recollected, representing North and South America, Europe, and Asia. Descriptive analysis and historical records from North America and Europe were used to propose three global migration hypotheses, differing on the origin of the disease (Mexico or Peru) and the hypothesis that it returned to South America from Europe. These scenarios were tested using approximate Bayesian computation. According to this analysis, the most probable scenario (posterior probability = 0.631) was the one proposing a Peruvian origin for P. infestans, an initial migration toward Colombia and Mexico, and a later event from Mexico to the United States and then to Europe and Asia, with no return to northern South America. In Colombia, the scenario considering a single migration from Peru and posterior migrations within Colombia was the most probable, with a posterior probability of 0.640. The obtained results support the hypothesis of a Peruvian origin for P. infestans followed by rare colonization events worldwide.
Assuntos
Phytophthora infestans , Doenças das Plantas , Phytophthora infestans/genética , Colômbia , Doenças das Plantas/microbiologia , Genótipo , Teorema de Bayes , Solanum tuberosum/microbiologia , Europa (Continente) , México , Ásia , América do NorteRESUMO
The Terminal Fusarium Clade (TFC) is a group in the Nectriaceae family with agricultural and clinical relevance. In recent years, various phylogenies have been presented in the literature, showing disagreement in the topologies, but only a few studies have conducted analyses on the divergence time scale of the group. Therefore, the evolutionary history of this group is still being determined. This study aimed to understand the evolutionary history of the TFC from a phylogenomic perspective. To achieve this objective, we performed a phylogenomic analysis using the available genomes in GenBank and ran eight different pipelines. We presented a new robust topology of the TFC that differs at some nodes from previous studies. These new relationships allowed us to formulate new hypotheses about the evolutionary history of the TFC. We also inferred new divergence time estimates, which differ from those of previous studies due to topology discordances and taxon sampling. The results suggested an important diversification process in the Neogene period, likely associated with the diversification and predominance of terrestrial ecosystems by angiosperms. In conclusion, we presented a robust time-scale phylogeny that allowed us to formulate new hypotheses regarding the evolutionary history of the TFC.
RESUMO
Campylobacter is one of the most common causes of foodborne gastroenteritis. The objective of this study was to estimate the prevalence and risk factors associated with Campylobacter jejuni and Campylobacter coli species in fresh chicken carcasses for human consumption from farmers' markets and small food stores in seven localities of Bogotá, Colombia. Ninety-one samples of fresh chicken carcasses were collected from farmers' markets and small food stores at seven localities in Bogotá. Samples were tested for Campylobacter using the real-time polymerase chain reaction (real time PCR) and isolation by plating. To analyze possible risk factors associated with Campylobacter spp. contamination in retail chicken carcasses, information was collected using a structured questionnaire and a univariate logistic regression analysis (α = 0.05) was used. Forty-two positive samples were obtained for Campylobacter spp., given a prevalence of 46.2%, of which 54.8% were to C. jejuni, 9.52% to C. coli and 35.7% to joint contaminations. C. jejuni was the most prevalent species. Risk factors found included poor cleanliness, in frequency of disinfection, type of establishment, and direct contact of chickens with other food. This study is the first report in the country on the prevalence and risk factors of Campylobacter in retail chicken.
RESUMO
The genus Vibrio includes pathogenic bacteria able to cause disease in humans and aquatic organisms, leading to disease outbreaks and significant economic losses in the fishery industry. Despite much work on Vibrio in several marine organisms, no specific studies have been conducted on Anadara tuberculosa. This is a commercially important bivalve species, known as "piangua hembra," along Colombia's Pacific coast. Therefore, this study aimed to identify and characterize the genomes of Vibrio isolates obtained from A. tuberculosa. Bacterial isolates were obtained from 14 A. tuberculosa specimens collected from two locations along the Colombian Pacific coast, of which 17 strains were identified as Vibrio: V. parahaemolyticus (n = 12), V. alginolyticus (n = 3), V. fluvialis (n = 1), and V. natriegens (n = 1). Whole genome sequence of these isolates was done using Oxford Nanopore Technologies (ONT). The analysis revealed the presence of genes conferring resistance to ß-lactams, tetracyclines, chloramphenicol, and macrolides, indicating potential resistance to these antimicrobial agents. Genes associated with virulence were also found, suggesting the potential pathogenicity of these Vibrio isolates, as well as genes for Type III Secretion Systems (T3SS) and Type VI Secretion Systems (T6SS), which play crucial roles in delivering virulence factors and in interbacterial competition. This study represents the first genomic analysis of bacteria within A. tuberculosa, shedding light on Vibrio genetic factors and contributing to a comprehensive understanding of the pathogenic potential of these Vibrio isolates.IMPORTANCEThis study presents the first comprehensive report on the whole genome analysis of Vibrio isolates obtained from Anadara tuberculosa, a bivalve species of great significance for social and economic matters on the Pacific coast of Colombia. Research findings have significant implications for the field, as they provide crucial information on the genetic factors and possible pathogenicity of Vibrio isolates associated with A. tuberculosa. The identification of antimicrobial resistance genes and virulence factors within these isolates emphasizes the potential risks they pose to both human and animal health. Furthermore, the presence of genes associated with Type III and Type VI Secretion Systems suggests their critical role in virulence and interbacterial competition. Understanding the genetic factors that contribute to Vibrio bacterial virulence and survival strategies within their ecological niche is of utmost importance for the effective prevention and management of diseases in aquaculture practices.
Assuntos
Arcidae , Sistemas de Secreção Tipo VI , Vibrio parahaemolyticus , Animais , Humanos , Virulência/genética , Fatores de Virulência/genética , AntibacterianosRESUMO
Introduction: The COVID-19 pandemic emerged in a context that lacked adequate prevention, preparedness, and response (PPR) activities, and global, regional, and national leadership. South American countries were among world's hardest hit by the pandemic, accounting for 10.1% of total cases and 20.1% of global deaths. Methods: This study explores how pandemic PPR were affected by political, socioeconomic, and health system contexts as well as how PPR may have shaped pandemic outcomes in Argentina, Brazil, Colombia, and Peru. We then identify lessons learned and advance an agenda for improving PPR capacity at regional and national levels. We do this through a mixed-methods sequential explanatory study in four South American countries based on structured interviews and focus groups with elite policy makers. Results: The results of our study demonstrate that structural and contextual barriers limited PPR activities at political, social, and economic levels in each country, as well as through the structure of the health care system. Respondents believe that top-level government officials had insufficient political will for prioritizing pandemic PPR and post-COVID-19 recovery programs within their countries' health agendas. Discussion: We recommend a regional COVID-19 task force, post-pandemic recovery, social and economic protection for vulnerable groups, improved primary health care and surveillance systems, risk communication strategies, and community engagement to place pandemic PPR on Argentina, Brazil, Colombia, and Peru and other South American countries' national public health agendas.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias , Brasil , Peru/epidemiologiaRESUMO
Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and, therefore, an accurate calculation of fishing quotas. This work proposes a deep learning-based spatial-spectral method to classify five pelagic species of interest for the Chilean fishing industry, including the targeted Engraulis ringens, Merluccius gayi, and Strangomera bentincki and non-targeted Normanichthtys crockeri and Stromateus stellatus fish species. This proof-of-concept method is composed of two channels of a convolutional neural network (CNN) architecture that processes the Red-Green-Blue (RGB) images and the visible and near-infrared (VIS-NIR) reflectance spectra of each species. The classification results of the CNN model achieved over 94% in all performance metrics, outperforming other state-of-the-art techniques. These results support the potential use of the proposed method to automatically monitor fish landings and, therefore, ensure compliance with the established fishing quotas.
Assuntos
Aprendizado Profundo , Animais , Chile , Benchmarking , Alimentos , IndústriasRESUMO
We report the complete genome assembly of Pediococcus acidilactici A40, a bacterium with biocontrol and plant growth-promoting properties, obtained from Colombia.
RESUMO
Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.
RESUMO
Even though it is widely held that the theory of evolution is one of the pillars of the biological sciences, as we begin the third decade of the twenty-first century, it is alarming how little we know about science, technology, engineering, and mathematics (STEM) majors and non-STEM majors' misconceptions about evolution in countries such as Brazil, Chile, Colombia, and Greece, to name a few. The situation is even more complicated if we acknowledge that contemporary educational approaches (e.g., student-centered learning) mean that students' misconceptions are one of the multiple aspects that influence the construction of meaningful learning. Here, we present a picture of Colombian STEM/non-STEM majors' misconceptions about evolution. Participants were 547 students from different STEM/non-STEM majors (278 females and 269 males, 16-24 years old). During 5 years (10 academic semesters), data were collected from students' responses to an 11-item questionnaire administered in a Colombian university. We hypothesized that the academic semester within these 5 years in which each student completed the instrument as well as respondents' age, gender, and/or major may influence their misconceptions about evolution. Results reveal that participants had a moderate understanding of evolution. Also, we found a limited understanding of microevolution among participants. Furthermore, cross-sectional analyses of differences in undergraduates' responses across demographic variables showed that despite apparent differences, these were not reliable since the differences were not statistically significant. Implications for evolution education are discussed.
RESUMO
Cassava Bacterial Blight (CBB) is a destructive disease widely distributed in the different areas where this crop is grown. Populations studies have been performed at local and national scales revealing a geographical genetic structure with temporal variations. A global epidemiology analysis of its causal agent Xanthomonas phaseoli pv. manihotis (Xpm) is needed to better understand the expansion of the disease for improving the monitoring of CBB. We targeted new tandem repeat (TR) loci with large repeat units, i.e. minisatellites, that we multiplexed in a scheme of Multi-Locus Variable number of TR Analysis (MLVA-8). This genotyping scheme separated 31 multilocus haplotypes in three clusters of single-locus variants and a singleton within a worldwide collection of 93 Xpm strains isolated over a period of fifty years. The major MLVA-8 cluster 1 grouped strains originating from all countries, except the unique Chinese strain. On the contrary, all the Xpm strains genotyped using the previously developed MLVA-14 microsatellite scheme were separated as unique haplotypes. We further propose an MLVA-12 scheme which takes advantage of combining TR loci with different mutation rates: the eight minisatellites and four faster evolving microsatellite markers, for global epidemiological surveillance. This MLVA-12 scheme identified 78 haplotypes and separated most of the strains in groups of double-locus variants (DLV) supporting some phylogenetic relationships. DLV groups were subdivided into closely related clusters of strains most often sharing the same geographical origin and isolated over a short period, supporting epidemiological relationships. The main MLVA-12 DLV group#1 was composed by strains from South America and all the African strains. The MLVA-12 scheme combining both minisatellite and microsatellite loci with different discriminatory power is expected to increase the accuracy of the phylogenetic signal and to minimize the homoplasy effects. Further investigation of the global epidemiology of Xpm will be helpful for a better control of CBB worldwide.
Assuntos
Manihot , Repetições Minissatélites , Repetições Minissatélites/genética , Manihot/genética , Filogenia , Genótipo , Repetições de Microssatélites/genética , Técnicas de Tipagem BacterianaRESUMO
Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.
Assuntos
Solanum tuberosum , Streptomyces , Virulência/genética , Filogenia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Genômica , Doenças das PlantasRESUMO
Socio-scientific argumentation (SSA) is increasingly being recognized as a key aspect of scientific literacy. Much of the reason for this is that this skill is crucial for helping students to become active participants in twenty-first-century democratic societies in which the construction of informed and critical views of socio-scientific issues (e.g. climate change, COVID-19 vaccination, genetic testing) plays a fundamental role. The problem is that instructors rarely give students explicit and research-based opportunities to enrich their SSA skills. Therefore, the aim of this study was to provide evidence that drama can be used as a platform to enrich argumentation in genetic testing. The data were derived from the written responses and the audio recordings of seventy-six university students (37 females and 39 males, 16-29 years old) in Colombia during a complete drama-based teaching-learning sequence (TLS) supervised by the same instructor. The outcomes suggest that the sequence can be used to enrich argumentation in genetic testing as it effectively provided participants with explicit opportunities to produce both arguments and counterarguments about the controversy whether the use of genetic tests among people should be encouraged. This study contributes to the literature on SSA in science education by demonstrating that drama is a promising tool to enhance argumentation about science-based social issues. Supplementary Information: The online version contains supplementary material available at 10.1007/s10763-022-10320-3.
RESUMO
OBJECTIVES: To estimate the risk factors for SARS-CoV-2 transmission in close contacts of adults at high risk of infection due to occupation, participants of the CoVIDA study, in Bogotá D.C., Colombia. SETTING: The CoVIDA study was the largest COVID-19 intensified sentinel epidemiological surveillance study in Colombia thus far, performing over 60 000 RT-PCR tests for SARS-CoV-2 infection. The study implemented a contact tracing strategy (via telephone call) to support traditional surveillance actions performed by the local health authority. PARTICIPANTS: Close contacts of participants from the CoVIDA study. PRIMARY AND SECONDARY OUTCOME MEASURES: SARS-CoV-2 testing results were obtained (RT-PCR with CoVIDA or self-reported results). The secondary attack rate (SAR) was calculated using contacts and primary cases features. RESULTS: The CoVIDA study performed 1257 contact tracing procedures on primary cases. A total of 5551 close contacts were identified and 1050 secondary cases (21.1%) were found. The highest SAR was found in close contacts: (1) who were spouses (SAR=32.7%; 95% CI 29.1% to 36.4%), (2) of informally employed or unemployed primary cases (SAR=29.1%; 95% CI 25.5% to 32.8%), (3) of symptomatic primary cases (SAR of 25.9%; 95% CI 24.0% to 27.9%) and (4) living in households with more than three people (SAR=22.2%; 95% CI 20.7% to 23.8%). The spouses (OR 3.85; 95% CI 2.60 to 5.70), relatives (OR 1.89; 95% CI 1.33 to 2.70) and close contacts of a symptomatic primary case (OR 1.48; 95% CI 1.24 to 1.77) had an increased risk of being secondary cases compared with non-relatives and close contacts of an asymptomatic index case, respectively. CONCLUSIONS: Contact tracing strategies must focus on households with socioeconomic vulnerabilities to guarantee isolation and testing to stop the spread of the disease.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante/métodos , Colômbia/epidemiologia , Teste para COVID-19 , Fatores de Risco , OcupaçõesRESUMO
The aim of this research is to develop burger patties from fungal protein. For this purpose, to maximize fungal biomass production, an optimization of the growth medium was initially carried out by testing different carbon sources and its proportion with nitrogen. Subsequently, for the design of the fungal patties, the effect of different flours, binders, and colorants on the properties of texture, water retention capacity, and color were tested, with a traditional animal-based burger patty as a control. Based on the first results, two optimal formulations were chosen and analyzed using an electronic tongue with the same control as reference. The conditions that maximized biomass production were 6 days of incubation and maltodextrin as a carbon source at a concentration of 90 g/L. In terms of product design, the formulation containing quinoa flour, carboxymethylcellulose, and beet extract was the most similar to the control. Finally, through shelf-life analysis, it was determined that the physical characteristics of the fungal meat substitute did not change significantly in an interval of 14 days. However, the product should be observed for a longer period. In addition, by the proximate analysis, it was concluded that fungal patties could have nutritional claims such as rich content in protein and fiber.
RESUMO
Bactris gasipaes var. gasipaes (Arecaceae, Palmae) is an economically and socially important plant species for populations across tropical South and Central America. It has been domesticated from its wild variety, B. gasipaes var. chichagui, since pre-Columbian times. In this study, we sequenced the plastome of the cultivated variety, B. gasipaes Kunth var. gasipaes and compared it with the published plastome of the wild variety. The chloroplast sequence obtained was 156,580 bp. The cultivated chloroplast sequence was conserved compared to the wild type sequence with 99.8% of nucleotide identity. We did, however, identify multiple Single Nucleotide Variants (SNVs), insertions, microsatellites and a resolved region of missing nucleotides. A SNV in one of the core barcode markers (matK) was detected between the wild and cultivated accessions. Phylogenetic analysis was carried out across the Arecaceae family and compared to previous reports, resulting in an identical topology. This study is a step forward in understanding the genome evolution of this species.
RESUMO
The creation of global research partnerships is critical to produce shared knowledge for the implementation of the UN 2030 Agenda for Sustainable Development. Sustainability science promotes the coproduction of inter- and transdisciplinary knowledge, with the expectation that studies will be carried out through groups and truly collaborative networks. As a consequence, sustainability research, in particular that published in high impact journals, should lead the way in terms of ethical partnership in scientific collaboration. Here, we examined this issue through a quantitative analysis of the articles published in Nature Sustainability (300 papers by 2135 authors) and Nature (2994 papers by 46,817 authors) from January 2018 to February 2021. Focusing on these journals allowed us to test whether research published under the banner of sustainability science favoured a more equitable involvement of authors from countries belonging to different income categories, by using the journal Nature as a control. While the findings provide evidence of still insufficient involvement of Low-and-Low-Middle-Income-Countries (LLMICs) in Nature Sustainability publications, they also point to promising improvements in the involvement of such authors. Proportionally, there were 4.6 times more authors from LLMICs in Nature Sustainability than in Nature articles, and 68.8-100% of local Global South studies were conducted with host country scientists (reflecting the discouragement of parachute research practices), with local scientists participating in key research steps. We therefore provide evidence of the promising, yet still insufficient, involvement of low-income countries in top sustainability science publications and discuss ongoing initiatives to improve this.
Assuntos
Pobreza , Publicações , ConhecimentoRESUMO
BACKGROUND: The use of respiratory devices can mitigate the spread of diseases such as COVID-19 in community settings. We aimed to determine the effectiveness of closed face shields with surgical face masks to prevent SARS-CoV-2 transmission in working adults during the COVID-19 pandemic in Bogotá, Colombia. METHODS: An open-label non-inferiority randomized controlled trial that randomly assigned participants to one of two groups: the intervention group was instructed to wear closed face shields with surgical face masks, and the active control group was instructed to wear only surgical face masks. The primary outcome was a positive reverse transcription polymerase chain reaction test, IgG/IgM antibody test for SARS-CoV-2 detection, or both during and at the end of the follow-up period of 21 days. The non-inferiority limit was established at - 5%. RESULTS: A total of 316 participants were randomized, 160 participants were assigned to the intervention group and 156 to the active control group. In total, 141 (88.1%) participants in the intervention group and 142 (91.0%) in the active control group completed the follow-up. PRIMARY OUTCOME: a positive SARS-CoV-2 test result was identified in one (0.71%) participant in the intervention group and three (2.1%) in the active control group. In the intention-to-treat analysis, the absolute risk difference was - 1.40% (95% CI [- 4.14%, 1.33%]), and in the per-protocol analysis, the risk difference was - 1.40% (95% CI [- 4.20, 1.40]), indicating non-inferiority of the closed face shield plus face mask (did not cross the non-inferiority limit). CONCLUSIONS: The use of closed face shields and surgical face masks was non-inferior to the surgical face mask alone in the prevention of SARS-CoV-2 infection in highly exposed groups. Settings with highly active viral transmission and conditions such as poor ventilation, crowding, and high mobility due to occupation may benefit from the combined use of masks and closed face shields to mitigate SARS-CoV-2 transmission. TRIAL REGISTRATION: ClinicalTrials.gov NCT04647305 . Registered on November 30, 2020.
Assuntos
COVID-19 , Adulto , COVID-19/prevenção & controle , Humanos , Máscaras , Pandemias/prevenção & controle , Medição de Risco , SARS-CoV-2RESUMO
Continued waves, new variants, and limited vaccine deployment mean that SARS-CoV-2 tests remain vital to constrain the coronavirus disease 2019 (COVID-19) pandemic. Affordable, point-of-care (PoC) tests allow rapid screening in non-medical settings. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is an appealing approach. A crucial step is to optimize testing in low/medium resource settings. Here, we optimized RT-LAMP for SARS-CoV-2 and human ß-actin, and tested clinical samples in multiple countries. "TTTT" linker primers did not improve performance, and while guanidine hydrochloride, betaine and/or Igepal-CA-630 enhanced detection of synthetic RNA, only the latter two improved direct assays on nasopharygeal samples. With extracted clinical RNA, a 20 min RT-LAMP assay was essentially as sensitive as RT-PCR. With raw Canadian nasopharygeal samples, sensitivity was 100% (95% CI: 67.6% - 100%) for those with RT-qPCR Ct values ≤ 25, and 80% (95% CI: 58.4% - 91.9%) for those with 25 < Ct ≤ 27.2. Highly infectious, high titer cases were also detected in Colombian and Ecuadorian labs. We further demonstrate the utility of replacing thermocyclers with a portable PoC device (FluoroPLUM). These combined PoC molecular and hardware tools may help to limit community transmission of SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Canadá , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
Across the world, the COVID-19 pandemic has disproportionately affected economically disadvantaged groups. This differential impact has numerous possible explanations, each with significantly different policy implications. We examine, for the first time in a low- or middle-income country, which mechanisms best explain the disproportionate impact of the virus on the poor. Combining an epidemiological model with rich data from Bogotá, Colombia, we show that total infections and inequalities in infections are largely driven by inequalities in the ability to work remotely and in within-home secondary attack rates. Inequalities in isolation behavior are less important but non-negligible, while access to testing and contract-tracing plays practically no role because it is too slow to contain the virus. Interventions that mitigate transmission are often more effective when targeted on socioeconomically disadvantaged groups.