Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0258837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35389991

RESUMO

Although peripheral deafferentation studies have demonstrated a critical role for trigeminal afference in modulating the orosensorimotor control of eating and drinking, the central trigeminal pathways mediating that control, as well as the timescale of control, remain to be elucidated. In rodents, three ascending somatosensory pathways process and relay orofacial mechanosensory input: the lemniscal, paralemniscal, and extralemniscal. Two of these pathways (the lemniscal and extralemniscal) exhibit highly structured topographic representations of the orofacial sensory surface, as exemplified by the one-to-one somatotopic mapping between vibrissae on the animals' face and barrelettes in brainstem, barreloids in thalamus, and barrels in cortex. Here we use the Prrxl1 knockout mouse model (also known as the DRG11 knockout) to investigate ingestive behavior deficits that may be associated with disruption of the lemniscal pathway. The Prrxl1 deletion disrupts somatotopic patterning and axonal projections throughout the lemniscal pathway but spares patterning in the extralemniscal nucleus. Our data reveal an imprecise and inefficient ingestive phenotype. Drinking behavior exhibits deficits on the timescales of milliseconds to seconds. Eating behavior shows deficits over an even broader range of timescales. An analysis of food acquisition and consummatory rate showed deficits on the timescale of seconds, and analysis of body weight suggested deficits on the scale of long term appetitive control. We suggest that ordered assembly of trigeminal sensory information along the lemniscal pathway is critical for the rapid and precise modulation of motor circuits driving eating and drinking action sequences.


Assuntos
Comportamento Alimentar , Vibrissas , Vias Aferentes , Animais , Ingestão de Alimentos , Camundongos , Camundongos Knockout , Núcleos do Trigêmeo
2.
J Neurosci Methods ; 374: 109565, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292306

RESUMO

BACKGROUND: The rodent vibrissal (whisker) systcnsorimotor integration and active tactile sensing. Experiments on the vibrissal system often require highly repeatable stimulation of multiple whiskers and the ability to vary stimulation parameters across a wide range. The stimulator must also be easy to position and adjust. Developing a multi-whisker stimulation system that meets these criteria remains challenging. NEW METHOD: We describe a novel multi-whisker stimulator to assess neural selectivity for the direction of global motion. The device can generate repeatable, linear sweeps of tactile stimulation across the whisker array in any direction and with a range of speeds. A fiber optic beam break detects the interval of whisker contact as the stimulator passes through the array. RESULTS: We demonstrate the device's function and utility by recording from a small number of multi-whisker-responsive neurons in the trigeminal brainstem. Neurons had higher firing rates in response to faster stimulation speeds; some also exhibited strong direction-of-motion tuning. COMPARISON WITH EXISTING METHODS: The stimulator complements more standard piezo-electric stimulators, which offer precise control but typically stimulate only single whiskers, require whisker trimming, and travel through small angles. It also complements non-contact methods of stimulation such as air-puffs and electromagnetic-induced stimulation. Tradeoffs include stimulation speed and frequency, and the inability to stimulate whiskers individually. CONCLUSIONS: The stimulator could be used - in either anesthetized or awake, head-fixed preparations - as an approach to studying global motion selectivity of multi-whisker sensitive neurons at multiple levels of the vibrissal-trigeminal system.


Assuntos
Percepção do Tato , Vibrissas , Animais , Neurônios/fisiologia , Estimulação Física/métodos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia
3.
Nat Neurosci ; 16(11): 1687-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056698

RESUMO

Glomeruli are functional units in the olfactory system. The mouse olfactory bulb contains roughly 2,000 glomeruli, each receiving inputs from olfactory sensory neurons (OSNs) that express a specific odorant receptor gene. Odors typically activate many glomeruli in complex combinatorial patterns and it is unknown which features of neuronal activity in individual glomeruli contribute to odor perception. To address this, we used optogenetics to selectively activate single, genetically identified glomeruli in behaving mice. We found that mice could perceive the stimulation of a single glomerulus. Single-glomerulus stimulation was also detected on an intense odor background. In addition, different input intensities and the timing of input relative to sniffing were discriminated through one glomerulus. Our data suggest that each glomerulus can transmit odor information using identity, intensity and temporal coding cues. These multiple modes of information transmission may enable the olfactory system to efficiently identify and localize odor sources.


Assuntos
Discriminação Psicológica/fisiologia , Rede Nervosa/fisiologia , Bulbo Olfatório/citologia , Condutos Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Animais , Cálcio/metabolismo , Marcação de Genes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Odorantes , Optogenética , Técnicas de Patch-Clamp , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA