Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Pineal Res ; 76(2): e12941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606814

RESUMO

The labeled ligand commonly employed in competition binding studies for melatonin receptor ligands, 2-[125I]iodomelatonin, showed slow dissociation with different half-lives at the two receptor subtypes. This may affect the operational measures of affinity constants, which at short incubation times could not be obtained in equilibrium conditions, and structure-activity relationships, as the Ki values of tested ligands could depend on either interaction at the binding site or the dissociation path. To address these issues, the kinetic and saturation binding parameters of 2-[125I]iodomelatonin as well as the competition constants for a series of representative ligands were measured at a short (2 h) and a long (20 h) incubation time. Concurrently, we simulated by molecular modeling the dissociation path of 2-iodomelatonin from MT1 and MT2 receptors and investigated the role of interactions at the binding site on the stereoselectivity observed for the enantiomers of the subtype-selective ligand UCM1014. We found that equilibrium conditions for 2-[125I]iodomelatonin binding can be reached only with long incubation times, particularly for the MT2 receptor subtype, for which a time of 20 h approximates this condition. On the other hand, measured Ki values for a set of ligands including agonists, antagonists, nonselective, and subtype-selective compounds were not significantly affected by the length of incubation, suggesting that structure-activity relationships based on data collected at shorter time reflect different interactions at the binding site. Molecular modeling simulations evidenced that the slower dissociation of 2-iodomelatonin from the MT2 receptor can be related to the restricted mobility of a gatekeeper tyrosine along a lipophilic path from the binding site to the membrane bilayer. The enantiomers of the potent, MT2-selective agonist UCM1014 were separately synthesized and tested. Molecular dynamics simulations of the receptor-ligand complexes provided an explanation for their stereoselectivity as due to the preference shown by the eutomer at the binding site for the most abundant axial conformation adopted by the ligand in solution. These results suggest that, despite the slow-binding kinetics occurring for the labeled ligand, affinity measures at shorter incubation times give robust results consistent with known structure-activity relationships and with interactions taken at the receptor binding site.


Assuntos
Melatonina , Quinolinas , Ligantes , Receptores de Melatonina , Melatonina/metabolismo , Amidas , Receptor MT2 de Melatonina/metabolismo , Receptor MT1 de Melatonina/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958986

RESUMO

Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves' methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications.


Assuntos
Aristolochia , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/prevenção & controle , Neoplasias Gástricas/metabolismo , Infecções por Helicobacter/metabolismo , Espectrometria de Massas em Tandem , Antibacterianos/química , Extratos Vegetais/química , Mucosa Gástrica/metabolismo
3.
Int Immunopharmacol ; 124(Pt A): 110882, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659111

RESUMO

The mechanisms by which myeloid-derived suppressor cells (MDSCs) mediate inhibition prominently include the production of reactive nitrogen species, in particular those generated by inducible nitric oxide synthase (iNOS), and reactive oxygen species. LP-BM5 murine retroviral infection results in a profound immunodeficiency, known as murine AIDS, as well as in increased numbers and activity of monocytic-type MDSCs (M-MDSCs) that suppress both T and B cell responses. While M-MDSCs suppress T cells ex vivo in a fully iNOS/NO-dependent manner, M-MDSC suppression of B cell responses is only partially due to iNOS/NO. This study preliminarily explored the role of two redox-modulating compounds in inhibiting the M-MDSC suppressive activity in LP-BM5 infection. The tested molecules were: I-152 consisting in a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-cysteamine (SMEA) and C4-GSH that is the n-butanoyl glutathione (GSH) derivative. The results show that both molecules, tested in a concentration range between 3 and 20 mM, blocked the M-MDSC suppression of activated B and T cells ex vivo and restored their proliferative capacity in vivo. Ex vivo I-152 blockade of M-MDSC suppressiveness was more significant for T cell (about 70%) while M-MDSC blockade by C4-GSH was preferential for B cell responsiveness (about 60%), which was also confirmed by in vivo investigation. Beyond insights into redox-dependent suppressive effector mechanism(s) of M-MDSCs in LP-BM5 infection, these findings may ultimately be important to identify new immunotherapeutics against infectious diseases.

4.
ACS Omega ; 8(24): 22190-22194, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360469

RESUMO

Fluorescent ligands are imperative to many facets of chemical biology and medicinal chemistry. Herein, we report the syntheses of two fluorescent melatonin-based derivatives as potential ligands of melatonin receptors. The two compounds, namely, 4-cyano and 4-formyl melatonin (4CN-MLT and 4CHO-MLT, respectively), which differ from melatonin by only two/three atoms that are very compact in size, were prepared using the selective C3-alkylation of indoles with N-acetyl ethanolamines involving the "borrowing hydrogen" strategy. These compounds exhibit absorption/emission spectra that are red-shifted from those of melatonin. Binding studies on two melatonin receptor subtypes showed that these derivatives have a modest affinity and selectivity ratio.

5.
FASEB J ; 37(2): e22741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583713

RESUMO

The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas Virais/metabolismo , Células HEK293 , Ligação Proteica , Compostos de Sulfidrila/farmacologia
6.
Biomed Pharmacother ; 158: 114083, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495668

RESUMO

COronaVIrus Disease 2019 (COVID-19) is a newly emerging infectious disease that spread across the world, caused by the novel coronavirus Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Despite the advancements in science that led to the creation of the vaccine, there is still an urgent need for new antiviral drugs effective against SARS-CoV-2. This study aimed to investigate the antiviral effect of Paulownia tomentosa Steud extract against SARS-CoV-2 and to evaluate its antioxidant properties, including respiratory smooth muscle relaxant effects. Our results showed that P. tomentosa extract can inhibit viral replication by directly interacting with both the 3-chymotrypsin-like protease and spike protein. In addition, the phyto complex does not reduce lung epithelial cell viability and exerts a protective action in those cells damaged by tert-butyl hydroperoxide , a toxic agent able to alter cells' functions via increased oxidative stress. These data suggest the potential role of P. tomentosa extract in COVID-19 treatment, since this extract is able to act both as an antiviral and a cytoprotective agent in vitro.


Assuntos
COVID-19 , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Antioxidantes/farmacologia , Tratamento Farmacológico da COVID-19 , Extratos Vegetais/farmacologia , Músculo Liso
7.
Eur J Med Chem ; 243: 114762, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150258

RESUMO

In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulação de Dinâmica Molecular , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/metabolismo
8.
Chemistry ; 28(57): e202201994, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916657

RESUMO

The growing importance of structurally diverse and functionalized enantiomerically pure unnatural amino acids in the design of drugs, including peptides, has stimulated the development of new synthetic methods. This study reports the challenging direct asymmetric alkylation of cyclic ketones with dehydroalanine derivatives via a conjugate addition reaction for the synthesis of enantiopure ketone-based α-unnatural amino acids. The key to success was the design of a bifunctional primary amine-thiourea catalyst that combines H-bond-directing activation and enamine catalysis. The simultaneous dual activation of the two relatively unreactive partners, confirmed by mass spectrometry studies, results in high reactivity while securing high levels of stereocontrol. A broad substrate scope is accompanied by versatile downstream chemical modifications. The mild reaction conditions and consistently excellent enantioselectivities (>95 % ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical enantiopure α-amino-acid building blocks.


Assuntos
Aminoácidos , Cetonas , Alanina/análogos & derivados , Alquilação , Aminas/química , Aminoácidos/química , Catálise , Cetonas/química , Peptídeos/química , Estereoisomerismo , Tioureia/química
9.
J Org Chem ; 87(15): 10073-10079, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35862282

RESUMO

We report the synthesis, chemical properties, and disulfide bond-reducing performance of a dithiol called NACMEAA, conceived as a hybrid of two biologically relevant thiols: cysteine and cysteamine. NACMEAA is conveniently prepared from inexpensive l-cystine in an efficient manner. As a nonvolatile, highly soluble, and neutral compound at physiological pH with the first thiol pKa value of 8.0, NACMEAA is reactive and user-friendly. We also demonstrate that NACMEAA reduces disulfide bonds in GSSG and lysozyme.


Assuntos
Cisteamina , Cisteína , Dissulfetos , Oxirredução , Substâncias Redutoras , Compostos de Sulfidrila , Tolueno/análogos & derivados
10.
Eur J Med Chem ; 221: 113529, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004471

RESUMO

Inhibition of FGF/FGFR signaling is a promising strategy for the treatment of malignances dependent from FGF stimulation, including multiple myeloma (MM). The steroidal derivative NSC12 (compound 1) is a pan-FGF trap endowed with antitumor activity in vivo. Chemical modifications of compound 1 were explored to investigate structure-activity relationships, focusing on the role of the bis(trifluoromethyl)1,3-propanediol chain, the stereochemistry at C20 and functionalization of C3 position. Our studies unveiled compound 25b, the pregnane 3-keto 20R derivative of compound 1 as an effective agent, blocking the proliferation of MM cells in vitro by inhibiting FGF-dependent receptor activation and slowing MM growth in vivo. Importantly, the absence of the hydroxyl group at C3 prevents binding to estrogen receptors, which might concur to the antitumor activity observed for compound 1, leading to a specific FGF/FGFR system inhibitor, and further supporting the role of FGFR in anticancer therapy in MM.


Assuntos
Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Animais , Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/análogos & derivados , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Org Biomol Chem ; 19(13): 2932-2940, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885552

RESUMO

A practical and asymmetric synthesis of (R)-4-amino-5-oxo-1,3,4,5-tetrahydrobenz[cd]indole, an enantiopure framework shared by most ergot alkaloids, was accomplished. Our method involves a Rh(i)-catalyzed 6-exo-trig intramolecular cyclization of an appropriate 4-pinacolboronic ester d-tryptophan aldehyde followed by the oxidation of the resulting secondary benzylic alcohol with a Cu(i)-ABNO catalyst and final deprotection under acidic conditions. This new procedure offers significant advantages over previous synthetic approaches, including brevity, mild reaction conditions, preservation of chiral integrity, and high overall yield and avoids the use of stoichiometric amounts of strongly basic and pyrophoric organometallic reagents.

12.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808471

RESUMO

Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.


Assuntos
Glutationa/metabolismo , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Humanos , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viroses/metabolismo
13.
Eur J Med Chem ; 189: 112047, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982652

RESUMO

The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Macrófagos/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Pirimidinas/química , Trypanosoma brucei brucei/enzimologia , Células A549 , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Metotrexato/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Org Chem ; 84(18): 12221-12227, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31476858

RESUMO

The concise and convergent total syntheses of (+)- and (-)-Fumimycin have been achieved by taking advantage of strategies for the asymmetric aza-Friedel-Crafts reaction of a highly substituted hydroquinone and N-fumaryl ketimine generated from the corresponding dehydroalanine. The enantiomerically pure natural product and its enantiomer were prepared in seven steps and 22% overall yield by employing both enantiomers of a BINOL-derived chiral phosphoric acid (CPA) catalyst.

15.
Nutrients ; 11(6)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181621

RESUMO

Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-ß-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and ß-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.


Assuntos
Acetilcisteína/metabolismo , Cisteamina/metabolismo , Glutationa/metabolismo , Pró-Fármacos/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Glutationa/deficiência , Humanos , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Pró-Fármacos/metabolismo , Retroviridae/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Viroses/metabolismo
16.
J Org Chem ; 84(12): 8027-8034, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31120249

RESUMO

The first total synthesis of natural (-)-clavicipitic acid from γ,γ-dimethylallyltryptophan (DMAT), its biosynthetic precursor, is described. This is done by regio- and chemoselective, remote, nondirected C(sp3)-H hydroxylation followed by aminocyclization. This study also features regio- and chemoselective Pd(0)-catalyzed linear prenylation at C4 of l-tryptophan boronic pinacol ester derivate, the latter obtained by a Lewis acid-promoted aziridine amino acid ring opening with 4-boronated indole. In addition, these results support the hypothesis that oxidative cyclization between amino acid nitrogen and the prenyl chain during clavicipitic acid biosynthesis can occur through the transient hydroxylated intermediate.


Assuntos
Carbono/química , Alcaloides de Claviceps/química , Alcaloides de Claviceps/síntese química , Hidrogênio/química , Triptofano/química , Catálise , Técnicas de Química Sintética , Ciclização , Hidroxilação
17.
J Org Chem ; 83(19): 12275-12283, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30191715

RESUMO

N-Acetyl ketimine generated from methyl 2-acetamidoacrylate was explored to develop an unprecedented domino aza-Friedel-Crafts/lactonization reaction with naphthols and phenols (including 5-hydroxyindoles). This novel method requires a catalyst loading of only 5 mol % of a phosphoric acid catalyst and provides a new series of 3-NHAc-naphtho- and benzofuranone derivatives bearing tetra-substituted stereogenic centers in moderate-to-good yields. The enantioselective variant using BINOL-derived phosphoric acids was also explored with 1-naphthol, providing the desired product with moderate enantioselectivities (up to 99:1 following recrystallization).

18.
Chem Commun (Camb) ; 48(27): 3336-8, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22362379

RESUMO

The asymmetric Michael addition of dioxindoles to ß-substituted nitroalkenes is reported. The bifunctional primary amine-thiourea A, by means of a non-covalent-based mode of catalysis, secures direct access to 3-substituted 3-hydroxyoxindole derivatives with high stereocontrol.


Assuntos
Alcenos/química , Indóis/síntese química , Nitrocompostos/química , Aminas/química , Catálise , Estrutura Molecular , Estereoisomerismo , Tioureia/análogos & derivados , Tioureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA