Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496676

RESUMO

Diffusion magnetic resonance imaging (dMRI) has been widely employed to model the trajectory of myelinated fiber bundles in white matter. Increasingly, dMRI is also used to assess local tissue properties throughout the brain. In the cerebral cortex, myelin content is a critical indicator of the maturation, regional variation, and disease related degeneration of gray matter tissue. Gray matter myelination can be measured and mapped using several non-diffusion MRI strategies; however, first order diffusion statistics such as fractional anisotropy (FA) show only weak spatial correlation with cortical myelin content. Here we show that a simple higher order diffusion parameter, the mean diffusion kurtosis (MK), is strongly correlated with the laminar and regional variation of myelin in the primate cerebral cortex. We carried out ultra-high resolution, multi-shelled dMRI in ex vivo marmoset monkey brains and compared dMRI parameters from a number of higher order models (diffusion kurtosis, NODDI and MAP MRI) to the distribution of myelin obtained using histological staining, and via Magnetization Transfer Ratio MRI (MTR), a non-diffusion MRI method. In contrast to FA, MK closely matched the myelin content assessed by histology and by MTR in the same sample. The parameter maps from MAP-MRI and NODDI also showed good correspondence with cortical myelin content. The results demonstrate that dMRI can be used to assess the variation of local myelin content in the primate cortical cortex, which may be of great value for assessing tissue integrity and tracking disease in living human patients.

2.
Nat Commun ; 13(1): 6702, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335105

RESUMO

Diffusion magnetic resonance imaging (dMRI) is commonly used to assess the tissue and cellular substructure of the human brain. In the white matter, myelinated axons are the principal neural elements that shape dMRI through the restriction of water diffusion; however, in the gray matter the relative contributions of myelinated axons and other tissue features to dMRI are poorly understood. Here we investigate the determinants of diffusion in the cerebral cortex. Specifically, we ask whether myelinated axons significantly shape dMRI fractional anisotropy (dMRI-FA), a measure commonly used to characterize tissue properties in humans. We compared ultra-high resolution ex vivo dMRI data from the brain of a marmoset monkey with both myelin- and Nissl-stained histological sections obtained from the same brain after scanning. We found that the dMRI-FA did not match the spatial distribution of myelin in the gray matter. Instead dMRI-FA was more closely related to the anisotropy of stained tissue features, most prominently those revealed by Nissl staining and to a lesser extent those revealed by myelin staining. Our results suggest that unmyelinated neurites such as large caliber apical dendrites are the primary features shaping dMRI measures in the cerebral cortex.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Anisotropia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Córtex Cerebral/diagnóstico por imagem , Encéfalo/patologia
3.
PLoS Biol ; 18(7): e3000810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735557

RESUMO

The temporal association cortex is considered a primate specialization and is involved in complex behaviors, with some, such as language, particularly characteristic of humans. The emergence of these behaviors has been linked to major differences in temporal lobe white matter in humans compared with monkeys. It is unknown, however, how the organization of the temporal lobe differs across several anthropoid primates. Therefore, we systematically compared the organization of the major temporal lobe white matter tracts in the human, gorilla, and chimpanzee great apes and in the macaque monkey. We show that humans and great apes, in particular the chimpanzee, exhibit an expanded and more complex occipital-temporal white matter system; additionally, in humans, the invasion of dorsal tracts into the temporal lobe provides a further specialization. We demonstrate the reorganization of different tracts along the primate evolutionary tree, including distinctive connectivity of human temporal gray matter.


Assuntos
Conectoma , Hominidae/anatomia & histologia , Macaca/anatomia & histologia , Lobo Temporal/anatomia & histologia , Substância Branca/anatomia & histologia , Animais , Humanos
4.
Cereb Cortex ; 27(9): 4463-4477, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27566980

RESUMO

We present a new 3D template atlas of the anatomical subdivisions of the macaque brain, which is based on and aligned to the magnetic resonance imaging (MRI) data set and histological sections of the Saleem and Logothetis atlas. We describe the creation and validation of the atlas that, when registered with macaque structural or functional MRI scans, provides a straightforward means to estimate the boundaries between architectonic areas, either in a 3D volume with different planes of sections, or on an inflated brain surface (cortical flat map). As such, this new template atlas is intended for use as a reference standard for macaque brain research. Atlases and templates are available as both volumes and surfaces in standard NIFTI and GIFTI formats.


Assuntos
Encéfalo/diagnóstico por imagem , Animais , Mapeamento Encefálico/métodos , Imageamento Tridimensional/métodos , Macaca , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 112(21): E2820-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964365

RESUMO

In vivo tractography based on diffusion magnetic resonance imaging (dMRI) has opened new doors to study structure-function relationships in the human brain. Initially developed to map the trajectory of major white matter tracts, dMRI is used increasingly to infer long-range anatomical connections of the cortex. Because axonal projections originate and terminate in the gray matter but travel mainly through the deep white matter, the success of tractography hinges on the capacity to follow fibers across this transition. Here we demonstrate that the complex arrangement of white matter fibers residing just under the cortical sheet poses severe challenges for long-range tractography over roughly half of the brain. We investigate this issue by comparing dMRI from very-high-resolution ex vivo macaque brain specimens with histological analysis of the same tissue. Using probabilistic tracking from pure gray and white matter seeds, we found that ∼50% of the cortical surface was effectively inaccessible for long-range diffusion tracking because of dense white matter zones just beneath the infragranular layers of the cortex. Analysis of the corresponding myelin-stained sections revealed that these zones colocalized with dense and uniform sheets of axons running mostly parallel to the cortical surface, most often in sulcal regions but also in many gyral crowns. Tracer injection into the sulcal cortex demonstrated that at least some axonal fibers pass directly through these fiber systems. Current and future high-resolution dMRI studies of the human brain will need to develop methods to overcome the challenges posed by superficial white matter systems to determine long-range anatomical connections accurately.


Assuntos
Imagem de Tensor de Difusão/métodos , Macaca mulatta/anatomia & histologia , Substância Branca/anatomia & histologia , Animais , Córtex Cerebral/anatomia & histologia , Conectoma/métodos , Conectoma/estatística & dados numéricos , Bases de Dados Factuais , Imagem de Tensor de Difusão/estatística & dados numéricos , Substância Cinzenta/anatomia & histologia , Humanos , Imageamento Tridimensional , Masculino , Modelos Neurológicos , Vias Neurais/anatomia & histologia
6.
PLoS One ; 4(6): e5749, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19492044

RESUMO

Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI -- Virtual Partner Interaction -- a coupled dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a computerized version of the Haken-Kelso-Bunz (HKB) equations that have been shown to govern basic forms of human coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach to human-machine interaction and opens up new ways to understand how humans interact with human-like machines including identification of underlying neural mechanisms.


Assuntos
Comportamento , Neurônios/metabolismo , Software , Interface Usuário-Computador , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Relações Interpessoais , Masculino , Modelos Neurológicos , Movimento , Redes Neurais de Computação , Neurociências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA