Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Respir Med ; 12(3): 195-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065200

RESUMO

BACKGROUND: It is uncertain whether individualisation of the perioperative open-lung approach (OLA) to ventilation reduces postoperative pulmonary complications in patients undergoing lung resection. We compared a perioperative individualised OLA (iOLA) ventilation strategy with standard lung-protective ventilation in patients undergoing thoracic surgery with one-lung ventilation. METHODS: This multicentre, randomised controlled trial enrolled patients scheduled for open or video-assisted thoracic surgery using one-lung ventilation in 25 participating hospitals in Spain, Italy, Turkey, Egypt, and Ecuador. Eligible adult patients (age ≥18 years) were randomly assigned to receive iOLA or standard lung-protective ventilation. Eligible patients (stratified by centre) were randomly assigned online by local principal investigators, with an allocation ratio of 1:1. Treatment with iOLA included an alveolar recruitment manoeuvre to 40 cm H2O of end-inspiratory pressure followed by individualised positive end-expiratory pressure (PEEP) titrated to best respiratory system compliance, and individualised postoperative respiratory support with high-flow oxygen therapy. Participants allocated to standard lung-protective ventilation received combined intraoperative 4 cm H2O of PEEP and postoperative conventional oxygen therapy. The primary outcome was a composite of severe postoperative pulmonary complications within the first 7 postoperative days, including atelectasis requiring bronchoscopy, severe respiratory failure, contralateral pneumothorax, early extubation failure (rescue with continuous positive airway pressure, non-invasive ventilation, invasive mechanical ventilation, or reintubation), acute respiratory distress syndrome, pulmonary infection, bronchopleural fistula, and pleural empyema. Due to trial setting, data obtained in the operating and postoperative rooms for routine monitoring were not blinded. At 24 h, data were acquired by an investigator blinded to group allocation. All analyses were performed on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT03182062, and is complete. FINDINGS: Between Sept 11, 2018, and June 14, 2022, we enrolled 1380 patients, of whom 1308 eligible patients (670 [434 male, 233 female, and three with missing data] assigned to iOLA and 638 [395 male, 237 female, and six with missing data] to standard lung-protective ventilation) were included in the final analysis. The proportion of patients with the composite outcome of severe postoperative pulmonary complications within the first 7 postoperative days was lower in the iOLA group compared with the standard lung-protective ventilation group (40 [6%] vs 97 [15%], relative risk 0·39 [95% CI 0·28 to 0·56]), with an absolute risk difference of -9·23 (95% CI -12·55 to -5·92). Recruitment manoeuvre-related adverse events were reported in five patients. INTERPRETATION: Among patients subjected to lung resection under one-lung ventilation, iOLA was associated with a reduced risk of severe postoperative pulmonary complications when compared with conventional lung-protective ventilation. FUNDING: Instituto de Salud Carlos III and the European Regional Development Funds.


Assuntos
Ventilação Monopulmonar , Adulto , Humanos , Feminino , Masculino , Adolescente , Respiração , Pressão Positiva Contínua nas Vias Aéreas , Pulmão/cirurgia , Oxigênio
2.
Front Cell Infect Microbiol ; 12: 941888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992159

RESUMO

Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)-dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow-derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.


Assuntos
Interferon Tipo I , Leishmania , Leishmaniose , Leishmaniavirus , Macrófagos , Animais , Humanos , Interferon Tipo I/imunologia , Leishmania/virologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmaniose/virologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos
3.
Front Cell Infect Microbiol ; 12: 941860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034709

RESUMO

The lymphatic system plays a crucial role in mounting immune response against intracellular pathogens, and recent studies have documented its role in facilitating tumor dissemination linked largely with cancer cells. However, in mucocutaneous leishmaniasis (MCL) caused by Leishmania Viannia subgenus showing infectious metastasis and resulting in severe distant secondary lesions, the route of escape of these parasites to secondary sites has not yet been investigated in detail. Our results demonstrated that when infection was associated with inflammation and additionally exacerbated by the presence of dsRNA viral endosymbiont (LRV1), lymphatic vessels could serve as efficient routes for infected cells to egress from the primary site and colonize distant organs. We challenged this hypothesis by using the intracellular Leishmania protozoan parasites Leishmania guyanensis (Lgy) associated with or without a dsRNA viral endosymbiont, exacerbating the infection and responsible for a strong inflammatory response, and favoring metastasis of the infection. We analyzed possible cargo cells and the routes of dissemination through flow cytometry, histological analysis, and in vivo imaging in our metastatic model to show that parasites disseminated not only intracellularly but also as free extracellular parasites using migrating immune cells, lymph nodes (LNs), and lymph vessels, and followed intricate connections of draining and non-draining lymph node to finally end up in the blood and in distant skin, causing new lesions.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Mucocutânea , Neoplasias , Humanos , Sistema Linfático
4.
Pathogens ; 11(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35456085

RESUMO

Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.

5.
Front Immunol ; 12: 723393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603295

RESUMO

Trained immunity refers to the ability of the innate immune system exposed to a first challenge to provide an enhanced response to a secondary homologous or heterologous challenge. We reported that training induced with ß-glucan one week before infection confers protection against a broad-spectrum of lethal bacterial infections. Whether this protection persists over time is unknown. To tackle this question, we analyzed the immune status and the response to Listeria monocytogenes (L. monocytogenes) of mice trained 9 weeks before analysis. The induction of trained immunity increased bone marrow myelopoiesis and blood counts of Ly6Chigh inflammatory monocytes and polymorphonuclear neutrophils (PMNs). Ex vivo, whole blood, PMNs and monocytes from trained mice produced increased levels of cytokines in response to microbial products and limited the growth of L. monocytogenes. In vivo, following challenge with L. monocytogenes, peripheral blood leukocytes were massively depleted in control mice but largely preserved in trained mice. PMNs were reduced also in the spleen from control mice, and increased in the spleen of trained mice. In transwell experiments, PMNs from trained mice showed increased spontaneous migration and CXCL2/MIP2α-induced chemotaxis, suggesting that training promotes the migration of PMNs in peripheral organs targeted by L. monocytogenes. Trained PMNs and monocytes had higher glycolytic activity and mitochondrial respiration than control cells when exposed to L. monocytogenes. Bacterial burden and dissemination in blood, spleen and liver as well as systemic cytokines and inflammation (multiplex bead assay and bioluminescence imaging) were reduced in trained mice. In full agreement with these results, mice trained 9 weeks before infection were powerfully protected from lethal listeriosis. Altogether, these data suggest that training increases the generation and the antimicrobial activity of PMNs and monocytes, which may confer prolonged protection from lethal bacterial infection.


Assuntos
Imunidade Inata , Listeria monocytogenes/imunologia , Listeriose/imunologia , Monócitos/metabolismo , Neutrófilos/metabolismo , Animais , Medula Óssea , Citocinas/metabolismo , Feminino , Inflamação/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
6.
PLoS Pathog ; 17(3): e1009422, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765083

RESUMO

The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania/metabolismo , Leishmaniose/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Animais , Inflamação/imunologia , Inflamação/metabolismo , Leishmania/imunologia , Leishmaniose/imunologia , Camundongos , Fator 2 Relacionado a NF-E2/imunologia , Transdução de Sinais/imunologia
7.
Bio Protoc ; 9(22): e3431, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654927

RESUMO

Leishmaniasis remains a major public health problem worldwide with a prevalence of 12 million, an incidence of 1 million persons, and 350 million people being at risk. Murine models have been largely used for studying the host-pathogen relationship and developing effective chemotherapies against Leishmania parasites. Thus, preclinical imaging is crucial for monitoring the disease outcome. The aim of this protocol is to quantify parasite burden using bioluminescence in vivo imaging. Here, we describe a high-throughput imaging workflow, together with data acquisition and analysis ideal to assess in vivo parasite load in mouse models.

8.
Cell Host Microbe ; 20(3): 318-328, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27593513

RESUMO

Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation.


Assuntos
Imunidade Inata , Leishmania guyanensis/virologia , Leishmaniavirus/imunologia , Macrófagos/parasitologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Leishmania guyanensis/patogenicidade , Leishmania guyanensis/fisiologia , Leishmaniose Mucocutânea/parasitologia , Leishmaniose Mucocutânea/patologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA