Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(6): 110156, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974468

RESUMO

Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.

2.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38903015

RESUMO

Structural changes to the vocal fold (VF) epithelium, namely, loosened intercellular junctions, have been reported in VF benign lesions. The potential mechanisms responsible for the disruption of cell junctions do not address the contribution of resident microbial communities to this pathological phenomenon. In this study, we focused on determining the relationship between Streptococcus pseudopneumoniae (SP), a dominant bacterial species associated with benign lesions, and Streptococcus salivarius (SS), a commensal bacterium, with human VF epithelial cells in our three-dimensional model of the human VF mucosa. This experimental system enabled direct deposition of bacteria onto constructs at the air/liquid interface, allowing for the assessment of bacterium-host interactions at the cellular, molecular and ultrastructural levels. Our findings demonstrate that SP disrupts VF epithelial integrity and initiates inflammation via the exported products HtrA1 and pneumolysin. In contrast, SS attaches to the VF epithelium, reduces inflammation and induces Mmp2-mediated apical desquamation of infected cells to mitigate the impact of pathogens. In conclusion, this study highlights the complexity of microbial involvement in VF pathology and potential VF mucosal restoration in the presence of laryngeal commensals.


Assuntos
Streptococcus salivarius , Prega Vocal , Humanos , Prega Vocal/microbiologia , Prega Vocal/patologia , Streptococcus salivarius/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Mucosa/microbiologia , Mucosa/patologia , Inflamação/patologia , Inflamação/microbiologia , Streptococcus pneumoniae/fisiologia
3.
Res Sq ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746233

RESUMO

Background: There is growing interest in the development of next-generation probiotics to prevent or treat metabolic syndrome. Previous studies suggested that Anaerobutyricum soehngenii may represent a promising probiotic candidate. A recent human study showed that while A. soehngenii supplementation is well tolerated and safe, it resulted in variable responses among individuals with a subset of the subjects significantly benefiting from the treatment. We hypothesized that gut microbiome variation is linked to the heterogeneous responses to A. soehngenii treatment observed in humans. Results: We colonized germ-free mice with fecal microbiota from human subjects that responded to A. soehngenii treatment (R65 and R55) and non-responder subjects (N96 and N40). Colonized mice were fed a high-fat diet (45% kcal from fat) to induce insulin resistance, and orally treated with either live A. soehngenii culture or heat-killed culture. We found that R65-colonized mice received a benefit in glycemic control with live A. soehngenii treatment while mice colonized with microbiota from the other donors did not. The glucose homeostasis improvements observed in R65-colonized mice were positively correlated with levels of cecal propionate, an association that was reversed in N40-colonized mice. To test whether the microbiome modulates the effects of propionate, R65- or N40-colonized mice were treated with tripropionin (TP, glycerol tripropionate), a pro-drug of propionate, or glycerol (control). TP supplementation showed a similar response pattern as that observed in live A. soehngenii treatment, suggesting that propionate may mediate the effects of A. soehngenii. We also found that TP supplementation to conventional mice reduces adiposity, improves glycemic control, and reduces plasma insulin compared to control animals supplemented with glycerol. Conclusions: These findings highlight the importance of the microbiome on glycemic control and underscore the need to better understand personal microbiome-by-therapeutic interactions to develop more effective treatment strategies.

4.
PLoS One ; 19(5): e0300672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743725

RESUMO

The larynx undergoes significant age and sex-related changes in structure and function across the lifespan. Emerging evidence suggests that laryngeal microbiota influences immunological processes. Thus, there is a critical need to delineate microbial mechanisms that may underlie laryngeal physiological and immunological changes. As a first step, the present study explored potential age and sex-related changes in the laryngeal microbiota across the lifespan in a murine model. We compared laryngeal microbial profiles of mice across the lifespan (adolescents, young adults, older adults and elderly) to determine age and sex-related microbial variation on 16s rRNA gene sequencing. Measures of alpha diversity and beta diversity were obtained, along with differentially abundant taxa across age groups and biological sexes. There was relative stability of the laryngeal microbiota within each age group and no significant bacterial compositional shift in the laryngeal microbiome across the lifespan. There was an abundance of short-chain fatty acid producing bacteria in the adolescent group, unique to the laryngeal microbiota; taxonomic changes in the elderly resembled that of the aged gut microbiome. There were no significant changes in the laryngeal microbiota relating to biological sex. This is the first study to report age and sex-related variation in laryngeal microbiota. This data lays the groundwork for defining how age-related microbial mechanisms may govern laryngeal health and disease. Bacterial compositional changes, as a result of environmental or systemic stimuli, may not only be indicative of laryngeal-specific metabolic and immunoregulatory processes, but may precede structural and functional age-related changes in laryngeal physiology.


Assuntos
Laringe , Microbiota , RNA Ribossômico 16S , Animais , Feminino , Masculino , Laringe/microbiologia , Camundongos , RNA Ribossômico 16S/genética , Fatores Etários , Envelhecimento/fisiologia , Bactérias/classificação , Bactérias/genética , Fatores Sexuais , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 14(1): 6095, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480804

RESUMO

In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microbiota/genética , Microbioma Gastrointestinal/genética , Genômica , Formiatos
6.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464150

RESUMO

The molecular basis for how host genetic variation impacts gut microbial community and bacterial metabolic niches remain largely unknown. We leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these we detected a genetic locus surrounding multiple amylase genes that was associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar metabolism functions. We also found that lower amylase gene number in the mouse genome was associated with higher gut Muribaculaceae levels. Previous work suggests that modulation of host amylase activity impacts the availability of carbohydrates to the host and potentially to gut bacteria. The genetic variants described above were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. This work reveals novel relationships between host genetic variation, gut microbial enterotypes and host physiology/disease phenotypes in mice.

7.
Metabolites ; 14(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535334

RESUMO

The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (ß = 0.02, p = 0.033), body mass index (BMI) (ß = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (ß = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (ß = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (ß = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (ß = 0.23, p = 4.4 × 10-33), and BMI (ß = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (ß = -0.19, p = 3.8 × 10-51) and triglycerides (ß = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.

8.
Anal Chem ; 96(9): 3870-3878, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373348

RESUMO

Gut microbiota can regulate host brain functions and influence various physiological and pathological processes through the brain-gut axis. To systematically elucidate the intervention of different gut environments on different brain regions, we implemented an integrated approach that combines 11-plex DiLeu isobaric tags with a "BRIDGE" normalization strategy to comparatively analyze the proteome of six brain regions in germ-free (GF)- and conventionally raised (ConvR)-mice. A total of 5945 proteins were identified and 5656 were quantifiable, while 1906 of them were significantly changed between GF- and ConvR-mice; 281 proteins were filtered with FC greater than 1.2 in at least one brain region, of which heatmap analysis showed clear protein profile disparities, both between brain regions and gut microbiome conditions. Gut microbiome impact is most overt in the hypothalamus and the least in the thalamus region. Collectively, this approach allows an in-depth investigation of the induced protein changes by multiple gut microbiome environments in a brain region-specific manner. This comprehensive proteomic work improves the understanding of the brain region protein association networks impacted by the gut microbiome and highlights the critical roles of the brain-gut axis.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Proteômica , Encéfalo , Proteoma
9.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38264909

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Propionatos , Sirtuína 3 , Humanos , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico/fisiologia , NAD , Sirtuína 3/genética , Indóis/farmacologia , Niacinamida
10.
Gut Microbes ; 16(1): 2295429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38153260

RESUMO

Women are at significantly greater risk of metabolic dysfunction after menopause, which subsequently leads to numerous chronic illnesses. The gut microbiome is associated with obesity and metabolic dysfunction, but its interaction with female sex hormone status and the resulting impact on host metabolism remains unclear. Herein, we characterized inflammatory and metabolic phenotypes as well as the gut microbiome associated with ovariectomy and high-fat diet feeding, compared to gonadal intact and low-fat diet controls. We then performed fecal microbiota transplantation (FMT) using gnotobiotic mice to identify the impact of ovariectomy-associated gut microbiome on inflammatory and metabolic outcomes. We demonstrated that ovariectomy led to greater gastrointestinal permeability and inflammation of the gut and metabolic organs, and that a high-fat diet exacerbated these phenotypes. Ovariectomy also led to alteration of the gut microbiome, including greater fecal ß-glucuronidase activity. However, differential changes in the gut microbiome only occurred when fed a low-fat diet, not the high-fat diet. Gnotobiotic mice that received the gut microbiome from ovariectomized mice fed the low-fat diet had greater weight gain and hepatic gene expression related to metabolic dysfunction and inflammation than those that received intact sham control-associated microbiome. These results indicate that the gut microbiome responds to alterations in female sex hormone status and contributes to metabolic dysfunction. Identifying and developing gut microbiome-targeted modulators to regulate sex hormones may be useful therapeutically in remediating menopause-related diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Feminino , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA