Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(2): 1649-1665, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33411861

RESUMO

Poly(methyl methacrylate) (PMMA) is a very versatile polymer which is used as a glass substitute or as an economical alternative to polycarbonate for many types of important applications, due to its particular physical properties. In this study we deal with the Raman spectroscopic characterization of the glass transition of PMMA, the value of the glass transition temperature being generally a decisive parameter for determining the application of polymers. The information obtained by two-dimensional correlation spectroscopy (2DCOS) analysis and perturbation-correlation moving-windows spectroscopy (PCMW2D) analysis of the temperature dependent depolarized Raman spectra enabled us to recognize that the glass transition of PMMA is ruled by intermolecular interactions which influence the vibrational modes of the molecular groups associated with ν(C[double bond, length as m-dash]O), δa(C-H) of α-CH3 and/or O-CH3, ν(C-O-C), ν(C-COO), and ν(C-C-O). This information was employed for the temperature dependent study of the Raman shift and of the full width at half maximum of the Raman peaks obtained through anisotropic and isotropic Raman spectra, of the depolarization ratio, of the Raman spectroscopic noncoincidence effect, and of the Raman peak intensities represented by Arrhenius-type plots, all results supporting the outcomes of this work. The comparison with results obtained by differential scanning calorimetry and with published results in molecular dynamics studies was also part of this work. As the main result, one can highlight the peak associated with the ν(C-O-C) stretching mode at around 812 cm-1 as the one which presents the better outcome for explaining the glass transition from the molecular point of view.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 433-441, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28961527

RESUMO

The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA