Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501241

RESUMO

Synthetic fungicides have been the main control of phytopathogenic fungi. However, they cause harm to humans, animals, and the environment, as well as generating resistance in phytopathogenic fungi. In the last few decades, the use of microorganisms as biocontrol agents of phytopathogenic fungi has been an alternative to synthetic fungicide application. Actinomycetes isolated from terrestrial, marine, wetland, saline, and endophyte environments have been used for phytopathogenic fungus biocontrol. At present, there is a need for searching new secondary compounds and metabolites of different isolation sources of actinomycetes; however, little information is available on those isolated from other environments as biocontrol agents in agriculture. Therefore, the objective of this review is to compare the antifungal activity and the main mechanisms of action in actinomycetes isolated from different environments and to describe recent achievements of their application in agriculture. Although actinomycetes have potential as biocontrol agents of phytopathogenic fungi, few studies of actinomycetes are available of those from marine, saline, and wetland environments, which have equal or greater potential as biocontrol agents than isolates of actinomycetes from terrestrial environments.

2.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406891

RESUMO

The application of metallic nanoparticles improves the yield and content of bioactive compounds in plants. The aim of the present study was to determine the effects of the foliar application of copper nanoparticles (CuO-NPs) in the yield and content of bioactive compounds in lettuce. Different concentrations of CuO-NPs (0, 0.5, 1, 2, 4, and 6 mg mL-1) were applied in lettuce. The yield, nutraceutical quality, and enzymatic activity were determined. Foliar spraying of CuO-NPs induced an increase in the biosynthesis of bioactive compounds. In addition to an increase in the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in lettuce plants, there were no negative effects on yield. Therefore, with the application of CuO-NPs, better quality lettuces are produced for the human diet due to the higher production of bioactive compounds.

3.
Plants (Basel) ; 11(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35050074

RESUMO

The indiscriminate use of synthetic fungicides has led to negative impact to human health and to the environment. Thus, we investigated the effects of postharvest biocontrol treatment with Debaryomyces hansenii, Stenotrophomonas rhizophila, and a polysaccharide ulvan on fruit rot disease, storability, and antioxidant enzyme activity in muskmelon (Cucumis melo L. var. reticulatus). Each fruit was treated with (1) 1 × 106 cells mL-1 of D. hansenii, (2) 1 × 108 CFU mL-1 of S. rhizophila, (3) 5 g L-1 of ulvan, (4) 1 × 106 cells mL-1 of D. hansenii + 1 × 108 CFU mL-1 of S. rhizophila, (5) 1 × 108 CFU mL-1 of S. rhizophila + 5 g L-1 of ulvan, (6) 1 × 106 cells mL-1 of D. hansenii + 1 × 108 CFU mL-1 of S. rhizophila + 5 g L-1 of ulvan, (7) 1000 ppm of benomyl or sterile water (control). The fruits were air-dried for 2 h, and stored at 27 °C ± 1 °C and 85-90% relative humidity. The fruit rot disease was determined by estimating the disease incidence (%) and lesion diameter (mm), and the adhesion capacity of the biocontrol agents was observed via electron microscopy. Phytopathogen inoculation time before and after adding biocontrol agents were also recorded. Furthermore, the storability quality, weight loss (%), firmness (N), total soluble solids (%), and pH were quantified. The antioxidant enzymes including catalase, peroxidase, superoxide dismutase, and phenylalanine ammonium lyase were determined. In conclusion, the mixed treatment containing D. hansenii, S. rhizophila, and ulvan delayed fruit rot disease, preserved fruit quality, and increased antioxidant activity. The combined treatment is a promising and effective biological control method to promote the shelf life of harvested muskmelon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA