Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072731

RESUMO

Measurements and simulations show that plasma relaxation processes in the reversed field pinch drive and redistribute both magnetic flux and momentum. To examine this relaxation process, a new 3D Mach B-dot probe has been constructed. This probe collects ion saturation currents through six molybdenum electrodes arranged on the flattened vertices of an octahedron made of boron nitride (BN). The ion saturation current flows through configurable voltage dividers for measurement and returns through one of six selectable return electrodes equally spaced along the 12 cm BN probe arm. In addition, the probe arm houses three B-dot magnetic pickup coils in the BN stalk immediately below to the octahedron, to measure the local magnetic field. Inserted in the Madison Symmetric Torus (MST) during deuterium discharges with 220 kA plasma current, density of 0.8 × 1013 cm-3, the probe collects ion saturation currents with sawtooth-like peaks correlated with relaxation events. This compact octahedral design fitting six Mach electrode surfaces within a 1 cm3 cube will enable future multi-point, multi-field probes compatible with the 1.5 in. ports of MST. Such probes will allow for flow circulation, current, and canonical vorticity to be calculated in the center of the finite difference stencil formed by the measurement locations.

2.
Rev Sci Instrum ; 83(10): 10E129, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126950

RESUMO

A new soft x-ray (SXR) T(e) and tomography diagnostic has been developed for MST that can be used for simultaneous SXR spectrum measurement, tomographically reconstructed emissivity, and reconstructed and line-of-sight electron temperature. The diagnostic utilizes high-performance differential transimpedance amplifiers (gain 10(5)-10(9)) to provide fast time response (up to 125 kHz), allowing for the study of plasma structure dynamics. SXR double-foil T(e) measurements are consistent with Thomson scattering. SXR brightness through a variety of filter thicknesses has been combined with charge exchange recombination spectroscopy (CHERS) impurity density measurements to determine the plasma energy spectrum. Magnetic pickup from the fluctuating magnetic fields in the plasma (B̃∼20 gauss at 10-20 kHz) has been dramatically reduced by improving the detector and housing design, so that nanoampere diode currents are now measured without interference from the substantial fluctuating magnetic field incident on the plasma facing surface of the probe.

3.
Rev Sci Instrum ; 79(10): 10F127, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044611

RESUMO

Several probes have been constructed to measure fluctuation-induced Maxwell and Reynolds stresses in the edge of the Madison Symmetric Torus reversed field pinch (RFP). The magnetic probe is composed of six magnetic pickup coil triplets. The triplets are separated spatially, which allows for local measurements of the Maxwell stress. To measure the plasma flow components for evaluation of the Reynolds stress, we employ a combination of an optical probe [Kuritsyn et al., Rev. Sci. Indrum. 77, 10F112 (2006)] and a Mach probe. The optical probe measures the radial ion flow locally using Doppler spectroscopy. The Mach probe consists of four current collectors biased negatively with respect to a reference tip and allows for measurements of the poloidal and toroidal components of the bulk plasma flow. The stresses are observed to play an important role in the momentum balance in the RFP edge during internal reconnection events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA