Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eukaryot Cell ; 8(11): 1677-91, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749177

RESUMO

Coordinated control of hyphal elongation and branching is essential for sustaining mycelial growth of filamentous fungi. In order to study the molecular machinery ensuring polarity control in the industrial fungus Aspergillus niger, we took advantage of the temperature-sensitive (ts) apical-branching ramosa-1 mutant. We show here that this strain serves as an excellent model system to study critical steps of polar growth control during mycelial development and report for the first time a transcriptomic fingerprint of apical branching for a filamentous fungus. This fingerprint indicates that several signal transduction pathways, including TORC2, phospholipid, calcium, and cell wall integrity signaling, concertedly act to control apical branching. We furthermore identified the genetic locus affected in the ramosa-1 mutant by complementation of the ts phenotype. Sequence analyses demonstrated that a single amino acid exchange in the RmsA protein is responsible for induced apical branching of the ramosa-1 mutant. Deletion experiments showed that the corresponding rmsA gene is essential for the growth of A. niger, and complementation analyses with Saccharomyces cerevisiae evidenced that RmsA serves as a functional equivalent of the TORC2 component Avo1p. TORC2 signaling is required for actin polarization and cell wall integrity in S. cerevisiae. Congruently, our microscopic investigations showed that polarized actin organization and chitin deposition are disturbed in the ramosa-1 mutant. The integration of the transcriptomic, genetic, and phenotypic data obtained in this study allowed us to reconstruct a model for cellular events involved in apical branching.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Perfilação da Expressão Gênica , Morfogênese , Transdução de Sinais , Sequência de Aminoácidos , Aspergillus niger/química , Aspergillus niger/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/química , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
2.
Fungal Genet Biol ; 45 Suppl 1: S3-S14, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18582586

RESUMO

Ustilago maydis, a Basidiomycete fungus that infects maize, exhibits two basic morphologies, a yeast-like and a filamentous form. The yeast-like cell is elongated, divides by budding, and the bud grows by tip extension. The filamentous form divides at the apical cell and grows by tip extension. The repertoire of morphologies is increased during interaction with its host, suggesting that plant signals play an important role in generation of additional morphologies. We have used Saccharomyces cerevisiae and Schizosaccharomyces pombe genes known to play a role in cell polarity and morphogenesis, and in the cytoskeleton as probes to survey the U. maydis genome. We have found that most of the yeast machinery is conserved in U. maydis, albeit the degree of similarity varies from strong to weak. The U. maydis genome contains the machinery for recognition and interpretation of the budding yeast axial and bipolar landmarks; however, genes coding for some of the landmark proteins are absent. Genes coding for cell polarity establishment, exocytosis, actin and microtubule organization, microtubule plus-end associated proteins, kinesins, and myosins are also present. Genes not present in S. cerevisiae and S. pombe include a homolog of mammalian Rac, a hybrid myosin-chitin synthase, and several kinesins that exhibit more similarity to their mammalian counterparts. We also used the U. maydis genes identified in this analysis to search other fungal and other eukaryotic genomes to identify the closest homologs. In most cases, not surprisingly, the closest homolog is among filamentous fungi, not the yeasts, and in some cases it is among mammals.


Assuntos
Genoma Fúngico/genética , Microtúbulos/metabolismo , Ustilago/genética , Ustilago/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilago/citologia
3.
Nature ; 444(7115): 97-101, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17080091

RESUMO

Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.


Assuntos
Genoma Fúngico/genética , Ustilago/genética , Ustilago/patogenicidade , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genômica , Família Multigênica/genética , Ustilago/crescimento & desenvolvimento , Virulência/genética
4.
FEMS Yeast Res ; 6(7): 999-1009, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17042749

RESUMO

Conserved polypeptides of the chitin synthase genes UmCHS3 and UmCHS6 from the phytopathogenic fungus Ustilago maydis were utilized as immunogens to obtain polyclonal antibodies that were purified by affinity procedures. Because of their similarities at the regions encoded by either polypeptide, it was concluded that anti-Chs3 antibodies recognized both Chs3 and Chs4 chitin synthases, whereas anti-Chs6 antibodies recognized Chs6 and Chs8 polypeptides. These antibodies were used to analyze the localization of the corresponding chitin synthases in U. maydis cells, using both indirect immunofluorescence microscopy and immunoelectron microscopy with colloidal-gold-labeled secondary antibodies. It was observed that chitin synthase proteins were accumulated both in the surface and in the cytoplasm of the fungal cells. Electron microscopy images revealed the accumulation of clusters of gold particles in vesicles, providing evidence for the possible origin and destination of chitin synthases in the fungal cells.


Assuntos
Quitina Sintase/análise , Ustilago/enzimologia , Centrifugação com Gradiente de Concentração , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica , Microscopia de Fluorescência
5.
Arch Microbiol ; 183(4): 292-300, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15812630

RESUMO

Video-enhanced light microscopy of the apical and subapical regions of growing hyphae of several fungal species revealed the existence of momentary synchronized motions of subcellular organelles. First discovered in a temperature-sensitive morphological mutant (ramosa-1) of Aspergillus niger, these seemingly spontaneous cytoplasmic contractions were also detected in wild-type hyphae of A. niger, Neurospora crassa, and Trichoderma atroviride. Cytoplasmic contractions in all fungi lasted about 1 s. Although the cytoplasm recovered its motility and appearance, the contraction usually led to drastic changes in Spitzenkörper (apical body) behavior and hyphal morphology, often both. Within 10 s after the contraction, the Spitzenkörper commonly became dislodged from its polar position; sometimes it disassembled into phase-dark and phase-light components; more commonly, it disappeared completely. Whether partial or complete, the dislocation of the Spitzenkörper was always accompanied by a sharp reduction or cessation of growth, and was usually followed by marked morphological changes that included bulbous hyphal tips, bulges in the hyphal profile, and formation of subapical and apical branches. The cytoplasmic contractions are vivid evidence that the most conspicuous cell organelles (membrane-bound) in living hyphae are interconnected via a contractile cytoskeletal network.


Assuntos
Aspergillus niger/fisiologia , Citoplasma/fisiologia , Hifas/citologia , Hifas/crescimento & desenvolvimento , Neurospora crassa/fisiologia , Trichoderma/fisiologia , Citoesqueleto/fisiologia , Morfogênese , Organelas/fisiologia
6.
Phytopathology ; 95(5): 480-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-18943312

RESUMO

ABSTRACT The experimental infection of Arabidopsis thaliana by the maize phytopathogenic hemibasidiomycete Ustilago maydis under axenic conditions is described. When plantlets were inoculated with mixtures of compatible haploids, the fungus was able to grow on the plant surface of inoculated seedlings in the form of white mycelium and invade the tissues, probably penetrating through stomata; however, it did not form teliospores. Symptoms of disease were increased anthocyanin formation, development of chlorosis, increased formation of secondary roots, induction of malformations in the leaves and petioles, induction of tissue necrosis, and stunting. In several cases, death of the invaded plants occurred. Interestingly, inoculation of single U. maydis haploid strains produced similar symptoms in Arabidopsis plantlets. In contrast, several mutants avirulent to maize also were avirulent or less virulent than wildtype strains on Arabidopsis. Collectively, the reported data suggest that the U. maydis-Arabidopsis pathosystem may constitute a useful experimental model for the analysis of some aspects of the virulence factors of the fungus. With the study of nonhost responses and their comparison to those occurring during maize infection, we will be able to elucidate some obscure aspects of U. maydis pathogenicity in the future.

7.
New Phytol ; 164(2): 337-346, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33873561

RESUMO

• Here, the host specificity of the corn smut fungus Ustilago maydis was analyzed, with the long-term objective of understanding the different aspects of its pathogenic behavior. • Axenic plantlets obtained in vitro, including one gymnosperm, monocotyledons and dicotyledons, were inoculated with a diploid strain of U. maydis, incubated in a growth chamber, and observed periodically. • All plants were susceptible to infection. The most common symptoms were growth of fungal mycelium on stems and leaves, increase in root number in monocots, or development of adventitious roots in dicots. Other symptoms - chlorosis, increased anthocyanins, necrosis and stunting - varied among the different plant species. Ustilago penetrated and grew into the plant tissues in the form of pleomorphic mycelium, but no teliospores were formed. Noticeably, the fungus induced formation of lateral buds and tumors in papaya. • The results provide evidence that U. maydis is able to infect a variety of phylogenetically unrelated plants grown under axenic conditions. These results may be useful in the analysis of different phenomena associated with the complex pathogenic behavior of U. maydis.

8.
Antonie Van Leeuwenhoek ; 86(4): 301-11, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15702382

RESUMO

The effects of the Ca2+/H+ exchanger A23187 and the K+/H+ exchanger nigericin on the growth of Neurospora crassa were analyzed. Both ionophores had the same effects on the fungus. They both inhibited growth in liquid media, apical extension being more affected than protein synthesis. A sudden challenge to either ionophore on solid media rapidly stopped hyphal extension. Additionally, both ionophores induced profuse mycelium branching and upward hyphal growth. Hyphae growing on nigericin-containing media also burst at the apex. Both ionophores caused a rapid inhibition in the apically-occurring synthesis of structural wall polysaccharides, but they did not affect mitochondrial energy conservation. With the use of DiBAC, a membrane-potential sensitive fluorophore, it was excluded that their effects were due to depletion of the plasma membrane potential. Considering that both ionophores exchange H+ for different metallic ions, we concluded that their effect was due to dissipation of a proton gradient, which is directly or indirectly involved in the apical growth of the fungus.


Assuntos
Cálcio/fisiologia , Hifas/crescimento & desenvolvimento , Ionóforos/metabolismo , Neurospora crassa/crescimento & desenvolvimento , Cálcio/metabolismo , Meios de Cultura , Hifas/efeitos dos fármacos , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/metabolismo , Nigericina/farmacologia , Organelas/efeitos dos fármacos , Organelas/metabolismo
9.
Plant Physiol ; 129(2): 747-61, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12068116

RESUMO

The LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved domain (the LOB domain) that is present in 42 other Arabidopsis proteins and in proteins from a variety of other plant species. Proteins showing similarity to the LOB domain were not found outside of plant databases, indicating that this unique protein may play a role in plant-specific processes. Genes encoding LOB domain proteins are expressed in a variety of temporal- and tissue-specific patterns, suggesting that they may function in diverse processes. Loss-of-function LOB mutants have no detectable phenotype under standard growth conditions, suggesting that LOB is functionally redundant or required during growth under specific environmental conditions. Ectopic expression of LOB leads to alterations in the size and shape of leaves and floral organs and causes male and female sterility. The expression of LOB at the base of lateral organs suggests a potential role for LOB in lateral organ development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Elementos de DNA Transponíveis/genética , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Família Multigênica/genética , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA