Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38744282

RESUMO

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Assuntos
Blastômeros , Linhagem da Célula , Embrião de Mamíferos , Feminino , Humanos , Blastômeros/citologia , Blastômeros/metabolismo , Divisão Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Masculino , Animais , Camundongos
2.
Nat Commun ; 9(1): 4254, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315174

RESUMO

Astrocytes are important regulators of excitatory synaptic networks. However, astrocytes regulation of inhibitory synaptic systems remains ill defined. This is particularly relevant since GABAergic interneurons regulate the activity of excitatory cells and shape network function. To address this issue, we combined optogenetics and pharmacological approaches, two-photon confocal imaging and whole-cell recordings to specifically activate hippocampal somatostatin or paravalbumin-expressing interneurons (SOM-INs or PV-INs), while monitoring inhibitory synaptic currents in pyramidal cells and Ca2+ responses in astrocytes. We found that astrocytes detect SOM-IN synaptic activity via GABABR and GAT-3-dependent Ca2+ signaling mechanisms, the latter triggering the release of ATP. In turn, ATP is converted into adenosine, activating A1Rs and upregulating SOM-IN synaptic inhibition of pyramidal cells, but not PV-IN inhibition. Our findings uncover functional interactions between a specific subpopulation of interneurons, astrocytes and pyramidal cells, involved in positive feedback autoregulation of dendritic inhibition of pyramidal cells.


Assuntos
Astrócitos/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
3.
Dev Cogn Neurosci ; 25: 45-57, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089656

RESUMO

Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons - adolescent versus adult, depressed versus healthy, medicated versus non-medicated - rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.


Assuntos
Antidepressivos/farmacologia , Encéfalo/fisiologia , Depressão/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Animais , Antidepressivos/administração & dosagem , Humanos
4.
Nature ; 508(7494): 55-60, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24670647

RESUMO

Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke.


Assuntos
Capilares/citologia , Circulação Cerebrovascular/fisiologia , Pericitos/fisiologia , Animais , Arteríolas/fisiologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/patologia , Capilares/efeitos dos fármacos , Morte Celular , Cerebelo/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Circulação Cerebrovascular/efeitos dos fármacos , Dinoprostona/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Neuroimagem Funcional , Ácido Glutâmico/farmacologia , Ácidos Hidroxieicosatetraenoicos/biossíntese , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Pericitos/citologia , Pericitos/efeitos dos fármacos , Pericitos/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Vasoconstrição , Vasodilatação/efeitos dos fármacos
5.
Nat Protoc ; 9(2): 323-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24434801

RESUMO

The cerebral circulation is highly specialized, both structurally and functionally, and it provides a fine-tuned supply of oxygen and nutrients to active regions of the brain. Our understanding of blood flow regulation by cerebral arterioles has evolved rapidly. Recent work has opened new avenues in microvascular research; for example, it has been demonstrated that contractile pericytes found on capillary walls induce capillary diameter changes in response to neurotransmitters, suggesting that pericytes could have a role in neurovascular coupling. This concept is at odds with traditional models of brain blood flow regulation, which assume that only arterioles control cerebral blood flow. The investigation of mechanisms underlying neurovascular coupling at the capillary level requires a range of approaches, which involve unique technical challenges. Here we provide detailed protocols for the successful physiological and immunohistochemical study of pericytes and capillaries in brain slices and isolated retinae, allowing investigators to probe the role of capillaries in neurovascular coupling. This protocol can be completed within 6-8 h; however, immunohistochemical experiments may take 3-6 d.


Assuntos
Barreira Hematorretiniana/ultraestrutura , Encéfalo/irrigação sanguínea , Imuno-Histoquímica/métodos , Microvasos/ultraestrutura , Pericitos/ultraestrutura , Animais , Encéfalo/citologia , Camundongos , Microscopia de Fluorescência/métodos , Microscopia de Interferência/métodos , Modelos Biológicos , Técnicas de Patch-Clamp
6.
Dev Cogn Neurosci ; 6: 72-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917518

RESUMO

BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/metabolismo , Circulação Cerebrovascular , Neurônios/metabolismo , Oxigênio/sangue , Serotonina/metabolismo , Vasoconstrição , Vasodilatação , Animais , Transtorno Autístico/sangue , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Glucose/metabolismo , Humanos , Interneurônios/metabolismo , Imageamento por Ressonância Magnética , Masculino , Serotonina/biossíntese , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
7.
Dev Cogn Neurosci ; 1(3): 199-216, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22436508

RESUMO

BOLD fMRI (blood oxygenation level dependent functional magnetic resonance imaging) is increasingly used to detect developmental changes of human brain function that are hypothesized to underlie the maturation of cognitive processes. BOLD signals depend on neuronal activity increasing cerebral blood flow, and are reduced by neural oxygen consumption. Thus, developmental changes of BOLD signals may not reflect altered information processing if there are concomitant changes in neurovascular coupling (the mechanism by which neuronal activity increases blood flow) or neural energy use (and hence oxygen consumption). We review how BOLD signals are generated, and explain the signalling pathways which convert neuronal activity into increased blood flow. We then summarize in broad terms the developmental changes that the brain's neural circuitry undergoes during growth from childhood through adolescence to adulthood, and present the changes in neurovascular coupling mechanisms and energy use which occur over the same period. This information provides a framework for assessing whether the BOLD changes observed during human development reflect altered cognitive processing or changes in neurovascular coupling and energy use.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Plasticidade Neuronal/fisiologia , Consumo de Oxigênio/fisiologia , Processamento de Sinais Assistido por Computador
8.
Proc Natl Acad Sci U S A ; 107(51): 22060-5, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21135206

RESUMO

Nitric oxide (NO) functions as a diffusible transmitter in most tissues of the body and exerts its effects by binding to receptors harboring a guanylyl cyclase transduction domain, resulting in cGMP accumulation in target cells. Despite its widespread importance, very little is known about how this signaling pathway operates at physiological NO concentrations and in real time. To address these deficiencies, we have exploited the properties of a novel cGMP biosensor, named δ-FlincG, expressed in cells containing varying mixtures of NO-activated guanylyl cyclase and cGMP-hydrolyzing phosphodiesterase activity. Responsiveness to NO, signifying a physiologically relevant rise in cGMP to 30 nM or more, was seen at concentrations as low as 1 pM, making cells by far the most sensitive NO detectors yet encountered. Even cells coexpressing phosphodiesterase-5, a cGMP-activated isoform found in many NO target cells, responded to NO in concentrations as low as 10 pM. The dynamics of NO capture and signal transduction was revealed by administering timed puffs of NO from a local pipette. A puff lasting only 100 ms, giving a calculated peak intracellular NO concentration of 23 pM, was detectable. The results could be encapsulated in a quantitative model of cellular NO-cGMP signaling, which recapitulates the NO responsiveness reported previously from crude cGMP measurements on native cells, and which explains how NO is able to exert physiological effects at extremely low concentrations, when only a tiny proportion of its receptors would be occupied.


Assuntos
GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Transdução de Sinais/fisiologia , Animais , Técnicas Biossensoriais/métodos , Bovinos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Óxido Nítrico/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA