Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Res Clin Pract ; 212: 111656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636847

RESUMO

Mitochondrial dysfunction is a significant feature of type 2 diabetes. MOTS-C, a peptide derived from mitochondria, has positive effects on metabolism and exercise capacity. This study explored the impact of high and moderate-intensity interval exercises on mitochondrial MOTS-C alterations and their correlation with metabolic markers in male diabetic sand rats. Thirty male sand rats were divided into six groups: control, MIIT, DM + HIIT, DM + MIIT, DM, and HIIT (5 rats each). Diabetes was induced using a high-fat diet (HFD) combined with streptozotocin (STZ). The Wistar sand rats in exercise groups underwent 8 weeks of interval training of varying intensities. Post sample collection, protein expressions of PCG-1a, AMPK, and GLUT4 were assessed through Western blot analysis, while MOTS-C protein expression was determined using ELISA. Both exercise intensity and diabetes significantly affected the levels of PCG-1a, MOTS-C, GLUT4 proteins, and insulin resistance (p < 0.001). The combined effect of diabetes status and exercise intensity on these levels was also significant (p < 0.001). However, the diabetes effect varied when comparing high-intensity to moderate-intensity exercise. The moderate-intensity exercise group with diabetes showed higher levels of PCG-1a, MOTS-C, and GLUT4 proteins and reduced insulin resistance levels (p < 0.001). Exercise intensity (p = 0.022) and diabetes (p = 0.008) significantly influenced AMPK protein levels. The interplay between diabetes status and exercise intensity on AMPK protein levels was noteworthy, with the moderate-intensity diabetes group exhibiting higher AMPK levels than the high-intensity diabetes group (p < 0.001). In conclusion, exercise elevates the levels of PCG-1a, MOTS-C, GLUT4, and AMPK proteins, regulating insulin resistance in diabetic sand rats. Given the AMPK-MOTS-C mitochondrial pathway's mechanisms, interval exercises might enhance the metabolic rates and general health of diabetic rodents.


Assuntos
Diabetes Mellitus Experimental , Condicionamento Físico Animal , Animais , Masculino , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/métodos , Diabetes Mellitus Experimental/metabolismo , Ratos , Transportador de Glucose Tipo 4/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Gerbillinae , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar
2.
Cytokine ; 179: 156608, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38631185

RESUMO

BACKGROUND: Mounting evidence revealed that an imbalance of Gut Microbiota (GM) leads to metabolic disorders. Synbiotics through regulation of GM composition can be an effective intervention in the management of metabolic diseases. This study aimed to investigate the effects of multi-species synbiotic supplementation on serum interleukin10 (IL-10) and fecal Short Chain Fatty Acids (SCFAs) in patients with dyslipidemia. METHODS: In this double-blind, randomized, placebo-controlled clinical trial, fifty-six adult men with dyslipidemia were randomly allocated to intervention and control groups and received either synbiotic or placebo powder twice a day for 12 weeks. Each synbiotic sachet contained 6 species of probiotic microorganisms with a total dose of 3 × 1010 Colony Forming Unit (CFU) and 5 gr inulin and Fructooligosaccharide (FOS) as prebiotics. Blood and stool samples were collected at the baseline and end of the study. Dietary intake, physical activity, anthropometric measurements, serum IL-10, and fecal SCFAs were assessed before and after the intervention. RESULT: There were no significant differences between the baseline characteristics of patients in the two groups. Serum IL-10 was increased in the synbiotic group (p < 0.0001). Moreover, synbiotic supplementation increased fecal concentration of acetate (p < 0.0001), butyrate (p = 0.043), propionate (p < 0.0001), and valerate (p < 0.026). A significant positive correlation was observed between the changes in fecal butyrate level and serum IL-10 concentration in the control group (r = 0.48, p = 0.01). CONCLUSIONS: A Twelve-week synbiotic supplementation increased fecal SCFAs and improved inflammation in adult men with dyslipidemia.


Assuntos
Suplementos Nutricionais , Dislipidemias , Ácidos Graxos Voláteis , Fezes , Interleucina-10 , Simbióticos , Humanos , Masculino , Fezes/microbiologia , Fezes/química , Simbióticos/administração & dosagem , Método Duplo-Cego , Interleucina-10/sangue , Dislipidemias/sangue , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/sangue , Pessoa de Meia-Idade , Adulto , Microbioma Gastrointestinal , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA