Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 261: 122065, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39002421

RESUMO

Peracetic acid (PAA) has received increasing attention as an alternative oxidant for wastewater treatment. However, existing processes for PAA activation to generate reactive species typically require external energy input (e.g., electrically and UV-mediated activation) or catalysts (e.g., Co2+), inevitably increasing treatment costs or introducing potential new contaminants that necessitate additional removal. In this work, we developed a catalyst-free, self-sustaining bioelectrochemical approach within a two-chamber bioelectrochemical system (BES), where a cathode electrode in-situ activates PAA using renewable biogenic electrons generated by anodic exoelectrogens (e.g., Geobacter) degrading biodegradable organic matter (e.g., acetic acid) in wastewater at the anode. This innovative BES-PAA technique achieved 98 % and 81 % removal of 2 µM sulfamethoxazole (SMX) in two hours at pH 2 (cation exchange membrane) and pH 6 (bipolar membrane) using 100 µM PAA without external voltage. Mechanistic studies, including radical quenching, molecular probe validation, electron spin resonance (ESR) experiments, and density functional theory (DFT) calculations, revealed that SMX degradation was driven by reactive species generated via biogenic electron-mediated OO cleavage of PAA, with CH3C(O)OO• contributing 68.1 %, •OH of 18.4 %, and CH3C(O)O• of 9.4 %, where initial formation of •OH and CH3C(O)O• rapidly reacts with PAA to produce CH3C(O)OO•. The presence of common water constituents such as anions (e.g., Cl-, NO3-, and H2PO4-) and humic acid (HA) significantly hinders SMX removal via the BES-PAA technique, whereas CO32- and HCO3- ions have a comparatively minor impact. Additionally, the study investigated the removal of various pharmaceuticals present in secondary treated municipal wastewater, attributing differences in removal efficiency to the selective action of CH3C(O)OO•. This research demonstrates a novel PAA activation method that is ecologically benign, inexpensive, and capable of overcoming catalyst deactivation and secondary pollution issues.

2.
Water Res ; 254: 121388, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430759

RESUMO

The periodate (PI)-based advanced oxidation process is valued for environmental remediation, but current activation methods involve high costs, secondary contamination risks, and limited applicability due to external energy inputs (e.g., UV), catalyst incorporation (e.g., Fe2+), or environmental modifications (e.g., freezing). In this work, novel bioelectric activation of PI using the electrons generated by electroactive bacteria was developed and investigated for rapid removal of carbamazepine (CBZ), achieving 100 %, 100 %, and 76 % removal efficiency for 4.22 µM of CBZ in 20 min at pH 2, 120 min at pH 6.4, and HRT of 30 min at pH 8.5, respectively, with a 1 mM PI dose and without an input voltage. It was deduced that electrons derived from bacteria could directly activate PI using Ti mesh electrodes and generate •IO3 via single electron transfer under strongly acidic conditions (e.g., pH 2). Nevertheless, under weak alkaline conditions (e.g., pH 8.5), biogenic electrons indirectly activated PI by generating OH-via 4e-reduction at the Ti mesh cathode, resulting in the formation of •O2- and 1O2. In addition to the metal cathode, a carbon-based cathode finely modulates the 2e-reduction, yielding H2O2 and activating PI to mainly form •OH. Moreover, primarily non-toxic IO3- was produced during treatment, while no detectable reactive iodine species (HOI, I2, and I3-) were observed. Furthermore, the bioelectric activation of PI demonstrated its capability to remove various micropollutants present in secondary-treated municipal wastewater, showcasing its broad-spectrum degradation ability. This study introduces a novel, cost-effective, and environmentally friendly PI activation technique with promising applicability for micropollutant elimination in water treatment.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Águas Residuárias , Ácido Periódico , Oxirredução , Carbamazepina
3.
J Hazard Mater ; 467: 133681, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341891

RESUMO

Producing H2O2 via microbial electrosynthesis is a cost-effective and environmentally favorable alternative to the costly and environmentally hazardous anthraquinone method. However, most studies have relied on carbon electrodes with two-dimensional (2D) surfaces (e.g., graphite), which have limited surface area and active sites, resulting in suboptimal H2O2 production. In this study, we demonstrate the enhanced efficiency of microbial H2O2 synthesis using three-dimensional (3D) electrodes produced through additive manufacturing technology due to their larger surface area than conventional carbon electrodes with 2D surfaces. This work innovatively combines 3D printed pyrolytic carbon (3D PyrC) electrodes with highly defined outer geometry and internal mesh structures derived from additive manufacturing with high-temperature resin precursors followed by pyrolysis with microbial electrochemical platform technology to achieve efficient H2O2 synthesis. The 3D PyrC electrode produced a maximum of 129.2 mg L-1 of H2O2 in 12 h, which was 2.3-6.9 times greater than conventional electrodes (e.g., graphite and carbon felt). Furthermore, the scalability, reusability and mechanical properties of the 3D PyrC electrode were exemplary, showcasing its practical viability for large-scale applications. Beyond H2O2 synthesis, the study explored the application of the 3D PyrC electrode in the bio-electro-Fenton process, demonstrating its efficacy as a tertiary treatment technology for the removal of micropollutants. This dual functionality underscores the versatility of the 3D PyrC electrode in addressing both the synthesis of valuable chemicals and environmental remediation. This study shows a novel electrode design for efficient, sustainable synthesis of H2O2 and subsequent environmental remediation.

4.
Biofabrication ; 16(1)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37956452

RESUMO

Brain organoid technology has transformed both basic and applied biomedical research and paved the way for novel insights into developmental processes and disease states of the human brain. While the use of brain organoids has been rapidly growing in the past decade, the accompanying bioengineering and biofabrication solutions have remained scarce. As a result, most brain organoid protocols still rely on commercially available tools and culturing platforms that had previously been established for different purposes, thus entailing suboptimal culturing conditions and excessive use of plasticware. To address these issues, we developed a 3D printing pipeline for the fabrication of tailor-made culturing platforms for fluidically connected but spatially separated brain organoid array culture. This all-in-one platform allows all culturing steps-from cellular aggregation, spheroid growth, hydrogel embedding, and organoid maturation-to be performed in a single well plate without the need for organoid manipulation or transfer. Importantly, the approach relies on accessible materials and widely available 3D printing equipment. Furthermore, the developed design principles are modular and highly customizable. As such, we believe that the presented technology can be easily adapted by other research groups and fuel further development of culturing tools and platforms for brain organoids and other 3D cellular systems.


Assuntos
Pesquisa Biomédica , Encéfalo , Humanos , Organoides , Bioengenharia , Impressão Tridimensional
5.
ACS Appl Nano Mater ; 5(2): 1808-1819, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35243211

RESUMO

The development of permeable three-dimensional (3D) macroporous carbon architectures loaded with active pseudocapacitive nanomaterials offers hybrid supercapacitor (SC) materials with higher energy density, shortened diffusion length for ions, and higher charge-discharge rate capability and thereby is highly relevant for electrical energy storage (EES). Herein, structurally complex and tailorable 3D pyrolytic carbon/Mn3O4 hybrid SC electrode materials are synthesized through the self-assembly of MnO2 nanoflakes and nanoflowers onto the surface of stereolithography 3D-printed architectures via a facile wet chemical deposition route, followed by a single thermal treatment. Thermal annealing of the MnO2 nanostructures concurrent with carbonization of the polymer precursor leads to the formation of a 3D hybrid SC electrode material with unique structural integrity and uniformity. The microstructural and chemical characterization of the hybrid electrode reveals the predominant formation of crystalline hausmannite-Mn3O4 after the pyrolysis/annealing process, which is a favorable pseudocapacitive material for EES. With the combination of the 3D free-standing carbon architecture and self-assembled binder-free Mn3O4 nanostructures, electrochemical capacitive charge storage with very good rate capability, gravimetric and areal capacitances (186 F g-1 and 968 mF cm-2, respectively), and a long lifespan (>92% after 5000 cycles) is demonstrated. It is worth noting that the gravimetric capacitance value is obtained by considering the full mass of the electrode including the carbon current collector. When only the mass of the pseudocapacitive nanomaterial is considered, a capacitance value of 457 F g-1 is achieved, which is comparable to state-of-the-art Mn3O4-based SC electrode materials.

6.
Micromachines (Basel) ; 13(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35334663

RESUMO

In this article, a novel approach for selective passivation of three-dimensional pyrolytic carbon microelectrodes via a facile electrochemical polymerization of a non-conductive polymer (polydopamine, PDA) onto the surface of carbon electrodes, followed by a selective laser ablation is elaborated. The 3D carbon electrodes consisting of 284 micropillars on a circular 2D carbon base layer were fabricated by pyrolysis of lithographically patterned negative photoresist SU-8. As a second step, dopamine was electropolymerized onto the electrode by cyclic voltammetry (CV) to provide an insulating layer at its surface. The CV parameters, such as the scan rate and the number of cycles, were investigated and optimized to achieve a reliable and uniform non-conductive coating on the surface of the 3D pyrolytic carbon electrode. Finally, the polydopamine was selectively removed only from the tips of the pillars, by using localized laser ablation. The selectively passivated electrodes were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. Due to the surface being composed of highly biocompatible materials, such as pyrolytic carbon and polydopamine, these 3D electrodes are particularly suited for biological application, such as electrochemical monitoring of cells or retinal implants, where highly localized electrical stimulation of nerve cells is beneficial.

7.
Dent Res J (Isfahan) ; 18: 46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429866

RESUMO

BACKGROUND: Periostin is a protein, which is essential for periodontal tissue integrity, development and maturity. The aim of this study was to evaluate the role of gingival crevicular fluid (GCF) periostin levels in the association between coronary heart disease (CHD) and chronic periodontitis (CP). MATERIALS AND METHODS: This matched case-control study was conducted on 116 participants. The participants were matched for age, gender, and body mass index and divided into four groups as follows: (1) 29 patients with CHD and sever CP (CHD-CP), (2) 29 patients with CHD and without CP (CHD-H), (3) 29 patients without CHD and with sever CP (H-CP), and (4) 29 healthy participants (H-H). The GCF periostin was collected and evaluated using the enzyme-linked immunosorbent assay (ELASA). Finally, the data were analyzed by analysis of variance using the stata software. Significance was assigned at P < 0.05. RESULTS: The results showed that there was a significant difference in the GCF periostin levels in the four groups (P < 0.05). Moreover, according to the results of the Bonferroni's test, differences in the mean periostin levels were significant (P < 0.001) between CHD-CP and CHD-H, CHD-CP and H-CP, CHD-CP and H-H, CHD-H and H-H, and also between H-CP and H-H. CONCLUSION: The periostin levels reduced in the CHD patients, especially in the CHD-CP group. The findings reveal a probable role of periostin in the association between CHD and CP.

8.
ACS Appl Mater Interfaces ; 13(3): 3591-3604, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438397

RESUMO

A reversible switchable on-demand UV-triggered drug delivery system (DDS) based on interpenetrating polymer networks (IPNs) with silicone as the host polymer and spiropyran (SP)-functionalized guest polymer is designed and demonstrated. The photo-responsive IPNs provide a new triggered drug delivery concept as they exploit the change in intermolecular interactions (work of adhesion) among the drug, matrix, and solvent when the incorporated hydrophobic SP moieties transform into the hydrophilic merocyanine form upon light irradiation without degradation and disruption of the DDS. The change in how the copolymer composition (hydrophilicity and content) and the lipophilicity of the drug (log P) affect the release profile was investigated. A thermodynamic model, based on Hansen solubility parameters, was developed to design and optimize the polymer composition of the IPNs to obtain the most efficient light-triggered drug release and suppression of the premature release. The developed IPNs showed excellent result for dopamine, l-dopa, and prednisone with around 90-95% light-triggered release. The model was applied to study the release behavior of drugs with different log P and to estimate if the light-induced hydrophobic-to-hydrophilic switch can overcome the work of adhesion between polymers and drugs and hence the desorption and release of the drugs. To the best of our knowledge, this is the first time that work of adhesion is used for this aim. Comparing the result obtained from the model and experiment shows that the model is useful for evaluating and estimating the release behavior of specific drugs merocyanine, IPN, DDS, and spiropyran.


Assuntos
Benzopiranos/química , Preparações de Ação Retardada/química , Indóis/química , Nitrocompostos/química , Polímeros/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Dopamina/administração & dosagem , Dopamina/química , Dopaminérgicos/administração & dosagem , Dopaminérgicos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Levodopa/administração & dosagem , Levodopa/química , Prednisona/administração & dosagem , Prednisona/química , Raios Ultravioleta
9.
Talanta ; 182: 178-186, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29501138

RESUMO

A sandwich-type nanostructured immunosensor based on carboxylated multi-walled carbon nanotube (CMWCNT)-embedded whiskered nanofibres (WNFs) was developed for detection of cardiac Troponin I (cTnI). WNFs were directly fabricated on glassy carbon electrodes (GCE) by removing the sacrificial component (polyethylene glycol, PEG) after electrospinning of polystyrene/CMWCNT/PEG nanocomposite nanofibres, and utilised as a transducer layer for enzyme-labeled amperometric immunoassay of cTnI. The whiskered segments of CMWCNTs were activated and utilised to immobilise anti-cTnT antibodies. It was observed that the anchored CMWCNTs within the nanofibres were suitably stabilised with excellent electrochemical repeatability. A sandwich-type immuno-complex was formed between cTnI and horseradish peroxidase-conjugated anti-cTnI (HRP-anti-cTnI). The amperometric responses of the immunosensor were studied using cyclic voltammetry (CV) through an enzymatic reaction between hydrogen peroxide and HRP conjugated to the secondary antibody. The nanostructured immunosensor delivered a wide detection range for cTnI from the clinical borderline for a normal person (0.5-2ngmL-1) to the concentration present in myocardial infarction patients (> 20ngmL-1), with a detection limit of ~ 0.04ngmL-1. It also showed good reproducibility and repeatability for three different cTnI concentration (1, 10 and 25ngmL-1) with satisfactory relative standard deviations (RSD). Hence, the proposed nanostructured immunosensor shows potential for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoensaio , Nanofibras/química , Nanotubos de Carbono/química , Troponina I/sangue , Anticorpos Imobilizados/química , Anticorpos Monoclonais/química , Eletrodos , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Imunoconjugados/química , Limite de Detecção , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Polietilenoglicóis/química , Polietilenoglicóis/isolamento & purificação , Poliestirenos/química , Reprodutibilidade dos Testes
10.
Biosens Bioelectron ; 78: 513-523, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657595

RESUMO

The vital importance of early and accurate diagnosis of cardiovascular diseases (CVDs) to prevent the irreversible damage or even death of patients has driven the development of biosensor devices for detection and quantification of cardiac biomarkers. Electrochemical biosensors offer rapid sensing, low cost, portability and ease of use. Over the past few years, nanotechnology has contributed to a tremendous improvement in the sensitivity of biosensors. In this review, the authors summarise the state-of-the-art of the application of one particular type of nanostructured material, i.e. nanofibres, for use in electrochemical biosensors for the ultrasensitive detection of cardiac biomarkers. A new way of classifying the nanofibre-based electrochemical biosensors according to the electrical conductance and the type of nanofibres is presented. Some key data from each article reviewed are highlighted, including the mechanism of detection, experimental conditions and the response range of the biosensor. The primary aim of this review is to emphasise the prospects for nanofibres for the future development of biosensors in diagnosis of CVDs as well as considering how to improve their characteristics for application in medicine.


Assuntos
Biomarcadores , Técnicas Biossensoriais/métodos , Doenças Cardiovasculares/diagnóstico , Nanofibras/química , Doenças Cardiovasculares/genética , Técnicas Eletroquímicas , Humanos , Nanofibras/uso terapêutico , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA