Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169028, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061656

RESUMO

Wastewater-based surveillance has emerged as a detection tool for population-wide infectious diseases, including coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals shed the virus, which can be detected in wastewater using molecular techniques such as reverse transcription-digital polymerase chain reaction (RT-dPCR). This study examined the association between the number of clinical cases and the concentration of SARS-CoV-2 in wastewater beyond linear regression and for various normalizations of viral loads. Viral loads were measured in a total of 446 wastewater samples during the period from August 2021 to April 2022. These samples were collected from nine different locations, with 220 samples taken from four specific sites within the city of Athens and 226 samples from five sites within Ohio University. The correlation between COVID-19 cases and wastewater viral concentrations, which was estimated using the Pearson correlation coefficient, was statistically significant and ranged from 0.6 to 0.9. In addition, time-lagged cross correlation was applied to identify the lag time between clinical and wastewater data, estimated 4 to 7 days. While we also explored the effect on the correlation coefficients of various normalizations of viral loads accounting for procedural loss or amount of fecal material and of estimated lag times, these alternative specifications did not change our substantive conclusions. Additionally, several linear and non-linear regression models were applied to predict the COVID-19 cases given wastewater data as input. The non-linear approach was found to yield the highest R-squared and Pearson correlation and lowest Mean Absolute Error values between the predicted and actual number of COVID-19 cases for both aggregated OHIO Campus and city data. Our results provide support for previous studies on correlation and time lag and new evidence that non-linear models, approximated with artificial neural networks, should be implemented for WBS of contagious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Modelos Lineares , Ohio/epidemiologia , Universidades
2.
Med Oncol ; 40(6): 170, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156929

RESUMO

Colorectal cancer (CRC) is the third broadly identified cancer in the world. The ineffectiveness of colorectal cancer treatment is redundantly reported. Natural bioactive compounds have gained popularity in reducing the drawback of conventional anti-cancer agents. Curcumin (Cur) and Artemisinin (Art) are materials of a natural source that have been utilized to treat numerous kinds of cancers. Although the benefits of bioactive materials, their utilization is limited because of poor solubility, bioavailability, and low dispersion rate in aqueous media. Nano delivery system such as niosome can improve the bioavailability and stability of bioactive compounds within the drug. In current work, we used Cur-Art co-loaded niosomal nanoparticles (Cur-Art NioNPs) as an anti-tumor factor versus colorectal cancer cell line. The synthesized formulations were characterized using dynamic light scattering, scanning electron microscopy, and FTIR. The proliferation ability of the cells and expression of apoptosis-associated gene were MTT assay and qRT-PCR, respectively. Cur-Art NioNPs exhibited well distributed with an encapsulation efficiency of 80.27% and 85.5% for Cur and Art. The NioNPs had good release and degradation properties, and had no negative effect on the survival and proliferation ability of SW480 cells. Importantly, nanoformulation form of Cur and Art significantly displayed higher toxicity effect against SW480 cells. Furthermore, Cur-Art NioNPs increased Bax, Fas, and p53 gene expressions and suppressed Bcl2, Rb, and Cyclin D 1 gene expressions. In summary, these results display the niosome NPs as a first report of nano-combinational application of the natural herbal substances with a one-step fabricated co-delivery system for effective colorectal cancer.


Assuntos
Antineoplásicos , Artemisininas , Neoplasias do Colo , Curcumina , Nanopartículas , Humanos , Curcumina/farmacologia , Lipossomos , Neoplasias do Colo/tratamento farmacológico , Antineoplásicos/farmacologia , Artemisininas/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos
3.
Toxicon ; 225: 107066, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841361

RESUMO

In this work, a novel electrochemical biosensor was fabricated based on modification of a glassy carbon electrode (GCE) with nafion-DNA/gold nanoparticles/poly-ethylenedioxy pyrrole/multi-walled carbon nanotubes-ionic liquid (NF-DNA/Au NPs/PEDOP/MWCNTs-IL/GCE) with the aim of amperometric detection of the DNA damage induced by thiram (TH). By incubation of the biosensor with the TH, the TH was intercalated within DNA, and the exposed DNA released negative charges at the surface of the biosensor which repelled the probe molecules and caused the amperometric response of the biosensor to be decreased. Protective effects of extra virgin olive oil (EVOO) on the DNA damage induced by the TH were investigated by recording amperometric responses of the biosensor in the presence of EVOO, and the results confirmed that the response of the biosensor didn't change to confirm the protective effects of the EVOO on preventing the DNA damage induced by the TH. A novel and sensitive electroanalytical method was developed for determination of the TH in two linear ranges including 1-6 pM and 7-10 pM based on amperometric detection of the DNA damage induced by the TH which gave a LOD of 0.31 pM. The developed methodology in this work was successful in detection of the DNA damage induced by TH, detection of protective effects of EVOO on preventing DNA damage and determination of the TH in real matrices.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Tiram , Azeite de Oliva/química , Nanopartículas Metálicas/química , Ouro/química , Nanotubos de Carbono/química , DNA/química , Dano ao DNA , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
4.
Ann Coloproctol ; 35(1): 9-14, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30879279

RESUMO

PURPOSE: Despite the use of different surgical methods, surgical site infection is still an important cause of mortality and morbidity in patients and imposes a considerable cost on the healthcare system. Administration of supplemental oxygen during surgery has been reported to reduce surgical site infection (SSI); however, that result is still controversial. This study was performed to evaluate the effect of hyperoxygenation during colorectal surgery on the incidence of wound infection. METHODS: This study was a prospective double-blind case-control study. The main aim of the study was to evaluate the effect of hyperoxygenation during colorectal surgery on the incidence of SSI. Also, secondary outcomes, such as atelectasis, pneumonia, respiratory failure, length of hospital stay, and required hospitalization in the intensive care unit were evaluated. RESULTS: SSI was recorded in 2 patients (2 of 40, 5%) in the hyperoxygenation group (FiO2 80%) and 6 patients (6 of 40, 15%) in the control group (FiO2 30%) (P < 0.05). Time of hospitalization was 6 ± 6.4 days in the hyperoxygenation group and 9.2 ± 2.4 days in the control group (P < 0.05). CONCLUSION: This study showed a positive effect of hyperoxygenation in reducing SSI in colorectal surgery, especially surgery in an emergency setting. When the low risk, low cost, and effectiveness of this method in patients undergoing a laparotomy are considered, it is recommended for all patients undergoing colorectal surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA