Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Environ Health Res ; : 1-12, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033513

RESUMO

Staphylococcus aureus with current universal importance represents a main carrier of emerging antimicrobial resistance determinatives of global health concerns that have developed drug resistance mechanisms to the various available antibiotics. On the other hand, due to the antimicrobial potential of Nigella Sativa oil (NSO), it was hypothesized that incorporation of nano-carriers (NS-SLN and NS-chitosan (CH) nanoparticles) can enhance its antibacterial effects. This study evaluated the physico-chemical and antibacterial characteristics of NS-SLN and NS-CH. TEM images revealed a round shape with clear edges for both nanoparticles, and the average sizes were reported to be 196.4 and 446.6 nm for NS-SLN and NS-CH, respectively. The zeta potential and encapsulation efficiency were -28.9 and 59.4 mV and 73.22% and 88% for NS-SLN and NS-CH, respectively. The Minimum Inhibitory Concentrations for NSO, NS-SLN, and NS-CH against S. aureus were 480, 200, and 80 µg/mL, respectively. The results confirm significantly stronger antibacterial influences of NSO when loaded into chitosan nanoparticles as a potential candidate for nano-delivery of antimicrobial agents.

3.
Drug Dev Ind Pharm ; 46(2): 318-328, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31976771

RESUMO

Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.


Assuntos
Alginatos/química , Cloridrato de Fingolimode/química , Nanopartículas/química , Poliésteres/química , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Fingolimode/farmacocinética , Cloridrato de Fingolimode/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
4.
Eur J Pharm Sci ; 101: 167-181, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28193537

RESUMO

In the current study, biodegradable PHBV/PLGA blend nanoparticles (NPs) containing Teriparatide were loaded in hyaluronic acid/jeffamine (HA-JEF ED-600) hydrogel to prepare a combination delivery system (CDS) for prolonged delivery of Teriparatide. The principal purpose of the present study was to formulate an effective and prolonged Teriparatide delivery system in order to reduce the frequency of injection and thus enhance patient's compliance. Morphological properties, swelling behaviour, crosslinking efficiency and rheological characterization of HA-JEF ED-600 hydrogel were evaluated. The CDS was acquired by adding PHBV/PLGA NPs to HA-JEF ED-600 hydrogel simultaneously with crosslinking reaction. The percentage of NPs incorporation within the hydrogel as well as the loading capacity and morphology of Teriparatide loaded CDS were examined. Intrinsic fluorescence and circular dichroism spectroscopy proved that Teriparatide remains stable after processing. The release profile represented 63% Teriparatide release from CDS within 50days with lower burst release compared to NPs and hydrogel. MTT assay was conducted by using NIH3T3 cell line and no sign of reduction in cell viability was observed. Based on Miller and Tainter method, LD50 of Teriparatide loaded CDS was 131.8mg/kg. In vivo studies demonstrated that Teriparatide loaded CDS could effectively increase serum calcium level after subcutaneous injection in mice. Favourable results in the current study introduced CDS as a promising candidate for controlled delivery of Teriparatide and pave the way for future investigations in the field of designing prolonged delivery systems for other peptides and proteins.


Assuntos
Preparações de Ação Retardada/química , Ácido Hialurônico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ácido Láctico/química , Nanopartículas/química , Poliésteres/química , Ácido Poliglicólico/química , Teriparatida/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
J Pharm Sci ; 106(1): 176-182, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27666377

RESUMO

Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341).


Assuntos
Portadores de Fármacos/química , Cloridrato de Fingolimode/administração & dosagem , Imunossupressores/administração & dosagem , Nanopartículas/química , Poliésteres/química , Algoritmos , Teorema de Bayes , Liberação Controlada de Fármacos , Cloridrato de Fingolimode/química , Imunossupressores/química , Modelos Químicos , Redes Neurais de Computação , Tamanho da Partícula
6.
Pharm Dev Technol ; 22(7): 860-870, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26555615

RESUMO

This study was focused on the fabrication, statistical optimization and in vitro characterization of poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles loaded with fingolimod. PHBV-based fingolimod nanoparticles were prepared by single and double evaporation methods; the incorporation efficiency of fingolimod was higher with the single emulsion evaporation method in the nanosize range particles. Fingolimod HCL was neutralized with NaOH in order to slow down the release of the highly soluble fingolimod. The encapsulation efficiency of neutralized fingolimod was much higher (53-73%) due to the insoluble form of the drug used in encapsulation. It was found that the amount of fingolimod, concentration of PHBV and polyvinyl alcohol (PVA) would influence the encapsulation efficiency significantly. The effect of these parameters on the Particle size, PdI, loading capacity and loading efficacy was studied. The optimum conditions were 1.32% PHBV, 0.42% PVA and 5 mg fingolimod. The average size of optimized nanoparticles which measured with the aid of the Box-Behnken experimental design was 250 nm and entrapment efficiency of 73(%). Drug-release from the nanospheres over a four-week period has shown a characteristic triphasic release pattern with an initial burst effect.


Assuntos
Sistemas de Liberação de Medicamentos , Cloridrato de Fingolimode , Poliésteres , Desenho de Fármacos , Nanopartículas , Tamanho da Partícula
7.
J Microencapsul ; 33(5): 460-474, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27424890

RESUMO

The purpose of this study was the preparation, optimisation and in vitro characterisation of PHBV and PLGA blend nanoparticles (NPs) for prolonged delivery of Teriparatide. Double emulsion solvent evaporation technique was employed for the fabrication of NPs. The nanoformulation was optimised using the Box-Behnken methodology. The morphological properties of NPs were assessed by both SEM and transmission electron microscopy (TEM). Encapsulation of Teriparatide within the NPs and lacking of chemical bonds between drug and copolymers were proved by XRPD, FTIR and DSC. The structural stability of Teriparatide after processing was confirmed by fluorescence spectrometry. The average size of optimised NPs was 250.0 nm with entrapment efficiency (EE) of 89.5% and drug loading (DL) of 5.0%. Teriparatide release from optimised NPs led to 64.4% release over 30 days and it showed a diffusion-based mechanism. Based on the favourable results, PHBV/PLGA blend NPs could be a promising candidate for designing a controlled release formulation of Teriparatide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA