Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Environ Res ; 255: 119111, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735378

RESUMO

Bromide (Br-) was found in the fresh waters at concentrations from 0.1 to 1 mg/L and can be used to activate peroxymonosulfate (PMS) as a widely used chemical oxidation agent. In the present study, the reaction between PMS and Br- ions (PMS/Br- process) for the effective degradation of reactive yellow 145 (RY-145) dye was investigated by changing operational parameters vis solution pH, dosage of Br- ions and PMS, RY-145 concentration, and reaction time. Based on the results, the simultaneous presence of PMS and Br- ions in the solution led to efficient degradation of RY-145 with a synergistic index of 11.89. The degradation efficiency of RY-145 was decreased in severe basic pH and the presence of CO32- ions as a coexisting anion. Likewise, 4 mg/L of humic acid (HA), used as a classic scavenger, led to a 26.53% decrease in the RY-145 degradation efficiency. The free bromine (HOBr/OBr-), superoxide radical (●O2-), and singlet oxygen (1O2) was the dominant oxidation agents in RY-145 degradation, which confirmed the nonradical degradation pathway. In addition, PMS/Br- process showed excellent ability in mineralizing RY-145 in different aqueous solutions (total organic carbon (TOC) decreased 86.39% in deionized water and 78.23% in tap water). Although pollutants such as azo dyes can be effectively removed in the PMS/Br- process, the formation of byproducts should be strategically controlled and special attention should be paid when the PMS-based advance oxidation process is applied to treat Br- containing solutions.


Assuntos
Compostos Azo , Brometos , Peróxidos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Peróxidos/química , Compostos Azo/química , Brometos/química , Oxirredução , Corantes/química , Purificação da Água/métodos
2.
RSC Adv ; 14(23): 16421-16431, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769958

RESUMO

Polypropylene hybrid polymeric membranes with aramid support have been fabricated using Thermally Induced Phase Separation (TIPS). Different modifying materials, such as metallic nanoparticles and reduced graphene oxide (rGO), improve the properties of these membranes. The nanomaterials and the fabricated membranes have been characterized with FTIR spectrometer, SEM and UV-Vis Spectrophotometer. Following that, the disinfection capabilities of the fabricated hybrid membranes were investigated. The antibacterial capability of the membranes is established through the testing of the membranes against bacterial strains S. aureus and E. coli, whereas the antiviral evaluation of the membranes was made against H9N2 and IBV strains. This research aims to develop advanced hybrid membranes that effectively disinfect water by incorporating novel nanomaterials and optimizing fabrication techniques.

3.
Nat Commun ; 15(1): 3509, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664454

RESUMO

Commercial wearable piezoelectric sensors possess excellent anti-interference stability due to their electronic packaging. However, this packaging renders them barely breathable and compromises human comfort. To address this issue, we develop a PVDF piezoelectric nanoyarns with an ultrahigh strength of 313.3 MPa, weaving them with different yarns to form three-dimensional piezoelectric fabric (3DPF) sensor using the advanced 3D textile technology. The tensile strength (46.0 MPa) of 3DPF exhibits the highest among the reported flexible piezoelectric sensors. The 3DPF features anti-gravity unidirectional liquid transport that allows sweat to move from the inner layer near to the skin to the outer layer in 4 s, resulting in a comfortable and dry environment for the user. It should be noted that sweating does not weaken the piezoelectric properties of 3DPF, but rather enhances. Additionally, the durability and comfortability of 3DPF are similar to those of the commercial cotton T-shirts. This work provides a strategy for developing comfortable flexible wearable electronic devices.

4.
ACS Omega ; 9(6): 6339-6354, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371765

RESUMO

Understanding the intermolecular interactions between antibiotic drugs and hemoglobin is crucial in biological systems. The current study aimed to investigate the preparation of chitosan/polysorbate-80/tripolyphosphate (CS-PS/TPP) nanocomposite as a potential drug carrier for Ciprofloxacin-HCl drug (CFX), intended for controlled release formulation and further used to interact with bovine hemoglobin. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis-differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction analyses were used to characterize the CS-PS/TPP nanocomposite and its CFX-loaded nanocomposite. The second series of biophysical properties were performed on the Ciprofloxacin-loaded CS-PS/TPP (NCFX) for interaction with bovine hemoglobin (BHb). The interactions of (CFX and NCFX) with redox protein hemoglobin were investigated for the first time through a series of in vitro experimental techniques to provide comprehensive knowledge of the drug-protein binding interactions. Additionally, the effect of inclusion of PS-80 on the CFX-BHb interaction was also studied at different concentrations using fluorescence spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and circular dichroism (CD) under physiological conditions. The binding process of CFX and NCFX was spontaneous, and the fluorescence of BHb was quenched due to the static mechanism formation of the (CFX/BHb) and (NCFX/BHb) complexes. Thermodynamic parameters ΔG, ΔH, and ΔS at various temperatures indicate that the hydrogen bonding and van der Waals forces play a major role in the CFX-BHb association.

5.
Ecotoxicol Environ Saf ; 266: 115584, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866034

RESUMO

Cerium-based UiO-66 (Ce-UiO-66) metal-organic frameworks (MOFs) were synthesized via a facile solvothermal method and fully characterized using FTIR, XRD, BET, SEM, EDX, and zeta potential techniques. The synthesized Ce-UiO-66 particles were embedded into an electrospun cross-linked polyvinyl alcohol (PVA)/chitosan (CTS) nanofiber (EPCNF), and then employed to remove organic dyes from water. The adsorption results demonstrated that the adsorption capacities of both anionic (Congo Red (CR), Methyl Orange (MO) and Methyl Red (MR)) and cationic (Methylene Blue (MB)) dyes over the fabricated electrospun nanofibers (ENFs) increased with increasing the loadings of Ce-UiO-66 MOFs. Accordingly, the adsorption performance of EPCNF-10 (containing 10 wt% of Ce-UiO-66 MOFs) adsorbent toward these organic dyes is in the order of CR (102.04 mg/g) > MO (87.71 mg/g) > MR (65.35 mg/g) > MB (34.24 mg/g). Moreover, it was found that the Freundlich isotherm model and the pseudo-second-order kinetic model were appropriate for describing the adsorption behaviors of EPCNF-10 adsorbent toward both anionic and cationic dyes. Thus, it can be proposed that the fabricated EPCNF-10 adsorbent would be effective adsorbent materials for the removal of anionic and cationic dyes from water due to its excellent adsorption performance, facile preparation, good regeneration, and simple separation from aqueous solutions.


Assuntos
Estruturas Metalorgânicas , Nanofibras , Poluentes Químicos da Água , Corantes , Vermelho Congo , Água , Adsorção
6.
Ecotoxicol Environ Saf ; 264: 115426, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683430

RESUMO

In the current study, two agro-waste lignocellulosic corncob (CC) and rice husk (RH) were thermally torrefied at 200-300 °C into a porous carbon-enriched biofuel. The scanning electron microscopy (SEM) of produced biofuel confirmed the rounded, homogenous, and spherical structure of the produced biofuels with higher porosity at a temperature between 250 and 300 °C with 60 min retention time. Brunauer-Emmett-Teller (BET) analysis indicated the high surface area (CC: 1.19-2.87 m2 g-1 and RH: 1.22-2.67 m2 g-1) and pore volume (CC: 1.23-2.81 ×10-3 m3 g-1 and RH: 1.46-2.58 ×10-3 m3 g-1). Crystallinity index decline percent (CC= 62.87% and RH=57.10%) estimated thermal stability and rise in amorphous cellulose reformation during (250-300 °C)/60 min that would efficiently hydrolyze during oxidative pyrolysis carbon reactive sites the rise in surface area and total pore's volume, having higher conversion rate as compared to raw materials. Carbon content was upgraded to 94% by eliminating hydrogen and oxygen from lignocellulosic agro-waste to produce energy-dense CC and RH. The lignin macromolecule transformation extent was estimated by O/C trend, which was equal to 63% and 47% for CC and RH, respectively, at 300 °C for 60 min. Due to low bulk density and pre-grinding energy requirements, torrefied biofuel with decomposed fibrous structure have lower transportation costs.


Assuntos
Biocombustíveis , Oryza , Porosidade , Carbono , Celulose , Hidrogênio
7.
Sci Total Environ ; 904: 166077, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544447

RESUMO

Ammonia (NH3), as a prevalent pollutant in municipal wastewater discharges, can impair aquatic life and have a negatively impact on the environment. Proper wastewater treatment and management practices are essential to protect ecosystems and keep human populations healthy. Therefore, using highly effective NH3-N recovery technologies at wastewater treatment plants (WWTPs) is widely acknowledged as a necessity. In order to improve the overall efficiency of NH3 removal/recovery processes, innovative technologies have been generally applied to reduce its concentration when discharged into natural water bodies. This study reviews the current status of the main issues affecting NH3 recovery from municipal/domestic wastewater discharges. The current study investigated the ability to recover valuable resources, e.g., nutrients, regenerated water, and energy in the form of biogas through advanced and innovative methods in tertiary treatment to achieve higher efficiency towards sustainable wastewater and resource recovery facilities (W&RRFs). In addition, the concept of paradigm shifts from WWTP to a large/full scale W&RRF has been studied with several examples of conversion to innovative bio-factories producing materials. On the other hand, the carbon footprint and the high-energy consumption of the WWTPs were also considered to assess the sustainability of these facilities.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Purificação da Água/métodos , Água , Esgotos
8.
Environ Res ; 237(Pt 1): 116879, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579965

RESUMO

The main obstacles in adopting solvent-based CO2 capture technology from power plant flue gases at the industrial scale are the energy requirements for solvent regeneration and their toxicity. These challenges can be overcome using new green and more stable ionic liquids (ILs) as solvents for post-combustion CO2 capture. In the current study, tributyl-tetradecyl-phosphonium chloride [P44414][Cl] as an IL, was immobilized on hydrophobic porous supports of polypropylene (PP), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) at 298 ± 3 K and pressures up to 2 bar. The surface morphology indicated homogenous immobilization of the IL on the membrane support. Supported ionic liquid membranes (SILMs) were tested for CO2 permeability and CO2/N2 selectivity. None of the SILMs exhibited IL leaching up to 2 bar. The PTFE-based SILM performed better than other supports with minimum loss in water contact angle (WCA) and achieved good antiwetting with a maximum CO2 permeability and selectivity over N2 of 2300 ± 139 Barrer and 31.60 ± 2.4, respectively. This work achieves CO2 permeability about two-fold more than other works having CO2/N2 selectivity range of 25-35 in similar SILMs. The diffusivity of CO2 and N2 in [P44414][Cl] was measured as 3.64 ± 0.18 and 2.01 ± 0.09 [10-8 cm2 s-1] and CO2 and N2 solubility values were 9.79 ± 0.47 and 0.19 ± 0.001 [10-2 cm3(STP) cm-3 cmHg-1], respectively. The high values of Young's modulus and tensile strength of the PTFE support-based SILM (234 ± 12 MPa and 6.07 ± 0.31 MPa, respectively) indicated the long-term application of SILM in flue gas separation. The results indicated phosphonium chloride-based ILs could be better solvent candidates for CO2 removal from large volumes of flue gases than amine-based ILs.

9.
Environ Sci Pollut Res Int ; 30(44): 99675-99693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37620699

RESUMO

Photodegradation of paraquat herbicide was assessed over several TiO2-WO3 heterojunctions embedded in the diatomite matrix. The characterization results indicated that WO3 embedding in the TiO2 decorated-diatomite matrix could not only enhance the adsorption capacity, visible-light response, and distribution of semiconductor species but also lessen the recombination rate and band gap energy. These characteristics were more noticeable as 5 wt.% of WO3 was embedded. Despite better optical properties of immobilized TiO2-WO3 nanocomposites, overloading WO3 generally alleviates the synergetic effect of tungsten due to surface coverage of diatomite matrix and, subsequently, the significant attenuation of textural properties, more formation of agglomerations and defects as trapping centers in the oxidation sites of heterostructures, and also, less likely of forming TiO2-WO3 heterojunction. In accordance with characterization results, the highest UV-photodegradation of paraquat was attained over heterostructured nanocomposite containing 5 wt.% WO3 (T25-W5/Di). The effects of significant operating parameters were also investigated, modeled, and optimized using response surface methodology (RSM)-central composite design (CCD). Under optimized operation conditions, the experimental removal efficiency of paraquat reached 97.1 and 80% using UV and simulated solar light, respectively. Moreover, the reusability results confirm the sustained activity of the T25-W5/Di nanocomposite.


Assuntos
Herbicidas , Paraquat , Fotólise
10.
ACS Appl Mater Interfaces ; 15(25): 30106-30116, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319265

RESUMO

The postsynthetic modification of metal-organic frameworks (MOFs) has opened up a promising area to widen their water treatment application. However, their polycrystalline powdery state still restricts their widespread industrial-scale applications. Herein, the magnetization of UiO-66-NH2 is reported as a promising approach to facilitate the separation of the used MOFs after water treatment. A two-step postmodification procedure employing 2,4,6-trichloro-1,3,5-triazine (TCT) and 5-phenyl-1H-tetrazole (PTZ) agents was introduced to level up the adsorption performance of the magnetic nanocomposite. Despite a decrement in porosity and specific surface area of the designed MOFs (m-UiO-66-TCT) compared to neat UiO-66-NH2, it outweighs in adsorption capacity. It was observed that m-UiO-66-TCT has an adsorption capacity of ≈298 mg/g for methyl orange (MO) with facile MOF separation using an external magnet. Pseudo-second-order kinetic model and Freundlich isotherm models suitably interpret the experimental data. Thermodynamic studies showed that MO removal using m-UiO-66-TCT is spontaneous and thermodynamically favorable at higher temperatures. The m-UiO-66-TCT composite exhibited easy separation, high adsorption capacity, and good recyclability, rendering it an attractive candidate for the adsorptive removal of MO dye from aqueous environments.

11.
Chemosphere ; 337: 139282, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37348615

RESUMO

Removal of Metronidazole (MNZ) and Oxytetracycline (OTC) from wastewater by the prepared (C, N codoped)-TiO2/g-C3N4 (Graphitic carbon nitride) was examined. l-Arginine (C, N codoped)-TiO2 and l-Arginine (C, N codoped)-TiO2/g-C3N4 photocatalysts were successfully synthesized through the sol-gel method, and optimal ratio of l-arginine:TiO2, as well as l-arginine/TiO2:g-C3N4, was determined by a kinetic study of photodegradation process. The maximum photocatalytic removal rate (0.062 min-1 for MNZ removal) was observed using 1% l-Arginine-TiO2/g-C3N4 (1:1) under visible light illumination, 2.2 and 12.4 times greater than those of 1% l-Arginine-TiO2 and pure TiO2, respectively. l-Arginine (1%)-TiO2/g-C3N4 (1:1) (co-doped-TCN) was investigated using X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), Photo-luminescence (PL), and Differential Reflectance Spectroscopy (DRS) as the best-performing photocatalyst. Response surface methodology (RSM) was used to study the effect of co-doped-TCN dosage (0.5-1.0 g/L), pH of simulated wastewater (4-10), initial concentration of MNZ and OTC (50-100 mg/L), and irradiation time (30-90 min for MNZ and 20-40 min for OTC) on removal efficiency of the antibiotics. Also, their optimum values were determined by RSM. The treated pharmaceutical wastewater showed high biodegradability features with 5-day biological oxygen demand/chemical oxygen demand (BOD5/COD) of 0.51 and 0.46 after 40 and 100 min reaction for OTC and MNZ, respectively. The order of reactive species responsible for the photodegradation of pollutants was •O2─> •OH > h+>1O2. The effect of inorganic anions showed that all anions decreased the removal efficiency of both antibiotics in order of NO3─> Cl─ >SO42─>HPO42─ >HCO3─ for MNZ and NO3─> SO42─ > Cl─ >HPO42─ >HCO3─ for OTC. Also, introducing different oxidants improved the photocatalytic removal efficiency with the order of H2O2>K2S2O8> KBrO3.


Assuntos
Oxitetraciclina , Metronidazol , Fotólise , Peróxido de Hidrogênio , Águas Residuárias , Luz , Antibacterianos/química , Catálise
12.
J Environ Manage ; 340: 117895, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121008

RESUMO

In efforts to minimize environmental pollution and carbon-based gas emissions, photocatalytic hydrogen production and sensing applications at ambient temperature are important. This research reports on the development of new 0D/1D materials based on TiO2 nanoparticles grown onto CdS hetersturctured nanorods via two-stage facile synthesis. The titanate nanoparticles when loaded onto CdS surfaces at an optimized concentration (20 mM), exhibited superior photocatalytic hydrogen production (21.4 mmol/h/gcat). The optimized nanohybrid was recycled for 6 cycles up to 4 h, indicating its excellent stabity for a prolonged period. Also, the photoelectrochemical water oxidation in alkaline medium was investigated to offer the optimized CRT-2 composite with 1.91 mA/cm2@0.8 V vs. RHE (0 V vs. Ag/AgCl) that was used for effective room-temperature NO2 gas detection exhibiting a higher response (69.16%) to NO2 (100 ppm) at room temperature at the lowest detection limit of ∼118 ppb than the pristine counterparts. Further, NO2 gas sensing performance of CRT-2 sensor was increased using UV light (365 nm) activation energy. Under the UV light, the sensor exhibited a remarkable gas sensing response quick response/recovery times (68/74), excellent long-term cycling stability, and significant selectivity to NO2 gas. Due to high porosity and surface area values of CdS (5.3), TiO2 (35.5), and CRT-2 (71.5 m2/g), excellent photocatalytic H2 production and gas sensing of CRT-2 is ascribed to morphology, synergistic effect, improved charge generation, and separation. Overall, 1D/0D CdS@TiO2 is proved to be an efficient material for hydrogen production and gas detection.


Assuntos
Ciclismo , Dióxido de Nitrogênio , Carbono , Hidrogênio
13.
J Environ Manage ; 326(Pt B): 116691, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402013

RESUMO

L-Proline (2%)-TiO2/BiOBr (30%) nanocomposite was synthesized to obtain high photocatalytic performance in the visible light region and infrared radiation(IR) for methylene blue (MB) and congo red (CR) removal from the contaminated wastewater. L-Proline (2%)-TiO2/BiOBr (30%) photocatalyst with strong absorption near IR wavelength and high charge separation ability was fabricated for the first time. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field-emission scanning electron microscope (FESEM)/Energy Dispersive X-ray (EDX), UV-Vis diffuse reflectance spectrum (DRS), photoluminescence (PL) and Brunauer-Emmett-Teller (BET) characterization techniques show that the visible driven nanocomposite was successfully synthesized. According to the UV-DRS analysis, the estimated band gaps for the L-proline (2%)-TiO2 and L-Proline (2%)-TiO2/BiOBr (30%) nanostructures were respectively 2.3 eV and 2.1 eV.The nanoparticles exhibited enhanced photocatalytic activity (93-100%) and high mineralization efficiency (71-89% TOC removal) for both the dyes. The best photocatalytic activity was achieved by adding 2 wt% of L-Proline and 30 wt% of BiOBr into TiO2 sol. Response surface methodology (RSM) was employed to find significant parameters and their optimum values for maximum degradation, which show pH, dye concentration, irradiation time, and catalyst dosage for both the dyes are significant. The best photocatalytic degradation efficiency was achieved at the optimum conditions of pH = 7.7, catalyst dosage = 0.71 g/L, irradiation time = 142 and dye concentration = 11 mg/L for MB. Scavenger study showed that •OH radicals are responsible for the degradation process.


Assuntos
Corantes , Nanocompostos , Prolina , Titânio/química , Luz , Catálise , Nanocompostos/química , Azul de Metileno
14.
Chemosphere ; 311(Pt 1): 137015, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36342024

RESUMO

Photodegradation of organic pollutants using metal oxides has shown extraordinary promise owing to the catalytic efficacy, low cost, less noxiousness, and good chemical constancy. In this research, pure and transition metal ions (Cu)-doped V2O5 nanosheets were synthesized and investigated for their photocatalytic efficiency using methyl blue (MB) and rhodamine B (RhB) organic dye pollutants under visible light irradiation. The orthorhombic crystal phase was confirmed by XRD analysis, which exhibited a stable phase upon incorporating Cu dopant ions. Optical properties were examined using optical absorption spectroscopy, while a reduced band gap was observed in the doped V2O5 nanosheets over the undoped sample. EIS analysis confirmed lower charge resistance in doped V2O5 nanosheets. The Cu dopant incorporation into the host matrix considerably enhanced photodegradation efficiency for MB and RhB impurities under light illumination. The improvement in catalytic efficacy is attributed to dopant ions that can separate photoinduced charge carriers and the quick movement of the charge. Moreover, comparatively lesser crystalline size, improved specific surface area, and hydroxyl group onto the catalyst surface are quite advantageous to offer better photocatalytic activity of Cu-doped V2O5 nanosheets.


Assuntos
Poluentes Ambientais , Fotólise , Poluentes Ambientais/análise , Luz , Catálise , Corantes/química
15.
J Control Release ; 353: 1-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343762

RESUMO

Beta-amyloid (Aß) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aß. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aß plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.


Assuntos
Doença de Alzheimer , Estruturas Metalorgânicas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Biomarcadores
16.
PLoS One ; 17(12): e0279647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36580482

RESUMO

The current work presents the development of hybrid glass fiber reinforced polyester resin (GFRPs) composite. The composite integrates functionalized carbon nanotubes (f-MWCNTs) with glass fiber (GF) using polyester resin as a media. Hand lay-up method was adopted to prepare GFRPs samples in the form of rectangular sheets. Morphological characteristics of the GFRPs were investigated through scanning electron microscopy (SEM), to analyze the f-MWCNTs distribution and agglomeration of the developed composite's surface due to varying concentrations from 0.0 to 0.5 wt.%. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were performed to confirm the presence of f-MWCNTs in the developed GFRPs. Sample with 0.4 wt. % f-MWCNTs showed the highest tensile strength and impact energy of 79 MPa, indicating a 31.66% improvement and 1.6 Nm with 77% improvement, respectively as compared to the control sample (0.wt.% f-MWCNT). The same sample also showed the thermal stability till 390 °C as measured through thermogravimetric analysis (TGA). Deposition of extra 10 layers initially increased the composite strength from 40 MPa to 128 MPa, however further increase in layers to 15 resulted decrease in strength to 100 MPa due to the poor interaction between the polyester resin and GF. The addition of f-MWCNTs in the composite effectively strengthens the interfacial bonding, which significantly improved the tensile and impact strength of the composite, making it tougher and thermally stable. However, further increase in the concentration of f-MWCNTs degraded the mechanical properties of developed composite such as compressive strength because of agglomeration of these nanoparticles and void formation in the composite.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Poliésteres , Materiais Dentários , Vidro
17.
PLoS One ; 17(6): e0267719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709202

RESUMO

Industrialization plays a vital role in the development of a country's economy. However, it also adversely affects the environment by discharging various unwanted and harmful substances such as heavy metals into the surface and subsurface aquifers. The current research work investigates the identification, characterization, and evaluation of specific heavy metals in industrial wastewater (IWW) and different composite samples of soil and vegetables (onion, pumpkin, lady finger, and green pepper) collected from selected agricultural fields irrigated with canals fed IWW in Mingora city of Swat (Pakistan). Obtained results were compared with the tube well water irrigated soil and vegetables grown in it. Heavy metals accumulation was tested through wet digestion method and atomic absorption spectrophotometry (AAS). The metal transfer factor (MTF) of heavy metals from soil to vegetables was also determined along with the health index (HI) to assess the potential health risk of the metals towards consumers using Monte Carlo simulation technique. Analysis of water samples showed that the concentration in mg l-1 of heavy metals in IWW follows the trend Fe (6.72) > Cr (0.537) > Pb (0.393) > Co (0.204) > Mn (0.125) > Ni (0.121). Analysis of the soil samples irrigated with IWW followed the order of Fe (47.27) > Pb (2.92) > Cr (2.90) >Ni (1.02) > Mn (0.90) > Co (0.68) and Fe (17.12) > Pb (2.12) > Cr (2.03) >Ni (0.76) > Co (0.49) > Mn (0.23) irrigated with TWW. Heavy metals concentration values found in soil irrigated with IWW were higher than the soil irrigated with TWW. Similar trends were found for agricultural produces grown on soil irrigated with IWW and found higher than the normal allowable WHO limits, indicating higher possibilities of health risks if continuously consumed. MTF values were found higher than 1 for ladyfinger and green pepper for Pb intake and pumpkin for Mn intake. The current study suggests the continuous monitoring of soil, irrigation water and agricultural products to prevent heavy metals concentration beyond allowable limits, in the food chain. Thus, concrete preventive measures must be taken to reduce heavy metal accumulation through wastewater irrigation to protect both human and animal health in the study area of Mingora Swat Pakistan.


Assuntos
Metais Pesados , Poluentes do Solo , Irrigação Agrícola/métodos , Animais , Monitoramento Ambiental , Contaminação de Alimentos/análise , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras , Águas Residuárias/análise , Água/análise
18.
J Environ Manage ; 316: 115214, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594821

RESUMO

This article deals with the adsorption performances of the unmodified nanodiamond (ND) and thermally oxidized nanodiamond (Ox-ND) for the removal of different heavy metal ions such as Fe (III), Cu (II), Cr (VI), and Cd (II) from wastewater. The adsorption capacities of the ions onto adsorbents are higher and follow the order: Ox-ND-3 > Ox-ND-1.5 > ND, which is consistent with their surface areas, zeta potentials, and the presence of carboxyl groups, suggesting that electrostatic attractions between the positive metal ions and the negatively charged adsorbents are the predominant adsorption mechanisms. Adsorption capacities of these adsorbents were found to be 26.8, 31.3, and 45.7 mg/g for Fe (III), 25.2, 30.5, and 44.5 mg/g for Cu (II), 33.6, 44.1, and 55.9 mg/g for Cr (VI), and 40.9, 52.9, and 67.9 mg/g for Cd (II) over ND, Ox-ND-1.5, and Ox-ND-3, respectively. The impact of various operating parameters such as agitation time, initial metal ion concentration, temperature, pH solution, adsorbent dosage, and coexistence of the metal ions on the adsorption performance of Ox-ND-3 towards Cd (II) ions along with the batch adsorption experiments were performed. The equilibrium was reached in 120 min and adsorption data were fitted well with the pseudo-second-order kinetic as well as the Freundlich isotherm models. Adsorption process was spontaneous and exothermic, while the maximum removal efficiency of Cd (II) ions occurred at pH of 6.9 and at 4 g/L dosage. These findings demonstrated that thermally oxidized nanodiamond (Ox-ND) can be a versatile adsorbent to remove the Cd (II) ions from wastewater.


Assuntos
Metais Pesados , Nanodiamantes , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Águas Residuárias , Água , Poluentes Químicos da Água/análise
19.
Chemosphere ; 295: 133850, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35122823

RESUMO

In the present study, zinc chloride (ZnCl2) followed by acid treating was employed for the fabrication of activated biochar from pomegranate husk (APHBC) for 2,4-dichlorophenol (2,4-DCP) adsorption from an aqueous solution. The batch adsorption experiments were carried out as a function of solution pH, APHBC dose, initial 2,4-DCP concentration, contact time, and ionic strength. The APHBC showed a well-developed pore with specific surface areas of 1576 m2/g due to explosive characteristics of ZnCl2. In addition, the XRD analysis showed that the diffraction peaks between 15 and 35° corresponded to amorphous carbon. The pore size distribution results showed that APHBC was dominantly mesoporous materials. The pHpzc value of APHBC was 6.15 ± 0.15. According to batch experiments, the optimum adsorption conditions were pH of 3.0, contact time 60 min, APHBC dose of 1.75 g/L and without ionic strengths. The absorption capacity of 2,4-DCP at the initial concentration of 150.0 mg/L promptly decreased from 259.5 ± 12.9 to 74.5 ± 3.7 mg/g as the APHBC dose increased from 0.50 to 2.00 g/L. The isotherm and kinetics study of 2,4-DCP adsorption by APHBC revealed that Liu and Avrami fractional-order well fitted with experimental data, respectively.


Assuntos
Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Clorofenóis , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais , Punica granatum
20.
Sci Rep ; 12(1): 117, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996919

RESUMO

Graphene: zinc oxide nanocomposite (GN:ZnO NC) platform was tried for the sensitive determination of para-nitrophenol (p-NP) through the electrochemical method. ZnO nanoparticles (NPs) were synthesized by the modified wet-chemical method where in potassium hydroxide and zinc nitrate were used as precursors and starch as a stabilizing agent. A green and facile approach was applied to synthesize GN:ZnO NC in which glucose was employed as a reductant to reduce graphene-oxide to graphene in the presence of ZnO NPs. The synthesized NC was characterized using scanning and high-resolution transmission electron microscopy, energy dispersive x-ray analysis, X-ray diffraction and Raman spectroscopic techniques to examine the crystal phase, crystallinity, morphology, chemical composition and phase structure. GN:ZnO NC layer deposited over the glassy carbon electrode (GCE) was initially probed for its electrochemical performance using the standard 1 mM K3[Fe(CN)6] model complex. GN:ZnO NC modified GCE was monitored based on p-NP concentration. An enhanced current response was observed in 0.1 M phosphate buffer of pH 6.8 for the determination of p-NP in a linear working range of 0.09 × 10-6 to 21.80 × 10-6 M with a lower detection limit of 8.8 × 10-9 M employing square wave adsorptive stripping voltammetric technique at a deposition-potential and deposition-time of - 1.0 V and 300 s, respectively. This electrochemical sensor displayed very high specificity for p-NP with no observed interference from some other possible interfering substances such as 2, 4-di-NP, ortho-NP, and meta-NP. The developed strategy was useful for sensitive detection of p-NP quantity in canals/rivers and ground H2O samples with good recoveries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA