Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Insect Physiol ; 83: 43-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514070

RESUMO

Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus.


Assuntos
Aedes/embriologia , Anopheles/embriologia , Quitina/isolamento & purificação , Culex/embriologia , Óvulo/química , Aedes/química , Aedes/fisiologia , Animais , Anopheles/química , Anopheles/fisiologia , Culex/química , Culex/fisiologia , Dessecação , Insetos Vetores/química , Insetos Vetores/embriologia , Insetos Vetores/fisiologia , Óvulo/fisiologia , Água/metabolismo
2.
J Insect Physiol ; 62: 54-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534672

RESUMO

Given their medical importance, mosquitoes have been studied as vectors of parasites since the late 1800's. However, there are still many gaps concerning some aspects of their biology, such as embryogenesis. The embryonic desiccation resistance (EDR), already described in Aedes and Anopheles gambiae mosquitoes, is a peculiar trait. Freshly laid eggs are susceptible to water loss, a condition that can impair their viability. EDR is acquired during embryogenesis through the formation of the serosal cuticle (SC), protecting eggs from desiccation. Nevertheless, conservation of both traits (SC presence and EDR acquisition) throughout mosquito evolution is unknown. Comparative physiological studies with mosquito embryos from different genera, exhibiting distinct evolutionary histories and habits is a feasible approach. In this sense, the process of EDR acquisition of Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus at 25°C was evaluated. Completion of embryogenesis occurs in Ae. aegypti, An. aquasalis and Cx. quinquefasciatus at, respectively 77.4, 51.3 and 34.3hours after egg laying, Cx. quinquefasciatus embryonic development taking less than half the time of Ae. aegypti. In all cases, EDR is acquired in correlation with SC formation. For both Ae. aegypti and An. aquasalis, EDR and SC appear at 21% of total embryonic development, corresponding to the morphological stage of complete germ band elongation/beginning of germ band retraction. Although phylogenetically closer to Ae. aegypti than to An. aquasalis, Cx. quinquefasciatus acquires both EDR and serosal cuticle later, with 35% of total development, when the embryo already progresses to the middle of germ band retraction. EDR confers distinct egg viability in these species. While Ae. aegypti eggs demonstrated high viability when left up to 72hours in a dry environment, those of An. aquasalis and Cx. quinquefasciatus supported these conditions for only 24 and 5hours, respectively. Our data suggest that serosa development is at least partially uncoupled from embryo development and that, depending upon the mosquito species, EDR bestows distinct levels of egg viability.


Assuntos
Aedes/fisiologia , Anopheles/fisiologia , Culex/fisiologia , Insetos Vetores/fisiologia , Óvulo/química , Aedes/química , Aedes/embriologia , Animais , Anopheles/química , Anopheles/embriologia , Evolução Biológica , Culex/química , Culex/embriologia , Dessecação , Insetos Vetores/química , Insetos Vetores/embriologia , Oviposição , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Estações do Ano
3.
J Insect Physiol ; 60: 50-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211390

RESUMO

Bruchid beetles infest various seeds. The seed coat is the first protective barrier against bruchid infestation. Although non-host seed coats often impair the oviposition, eclosion and survival of the bruchid Callosobruchus maculatus larvae, morphological and biochemical aspects of this phenomenon remain unclear. Here we show that Phaseolus vulgaris (non-host) seed coat reduced C. maculatus female oviposition about 48%, increased 83% the seed penetration time, reduced larval mass and survival about 62 % and 40 % respectively. Interestingly, we found no visible effect on the major events of insect embryogenesis, namely the formation of the cellular blastoderm, germ band extension/retraction, embryo segmentation, appendage formation and dorsal closure. Larvae fed on P. vulgaris seed coat have greater FITC fluorescence signal in the midgut than in the feces, as opposed to what is observed in control larvae fed on Vigna unguiculata. Cysteine protease, α-amylase and α-glucosidase activities were reduced in larvae fed on P. vulgaris natural seed coat. Taken together, our results suggest that although P. vulgaris seed coat does not interfere with C. maculatus embryonic development, food digestion was clearly compromised, impacting larval fitness (e.g. body mass and survivability).


Assuntos
Phaseolus/fisiologia , Sementes/fisiologia , Gorgulhos/crescimento & desenvolvimento , Animais , Digestão , Desenvolvimento Embrionário , Feminino , Larva/crescimento & desenvolvimento , Oviposição , Gorgulhos/embriologia
4.
BMC Dev Biol ; 10: 25, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20184739

RESUMO

BACKGROUND: The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. RESULTS: Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. CONCLUSIONS: The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes aegypti embryogenesis. Furthermore, the results also suggest a role for GSK3 in glycogen balance/distribution during morphological modifications.


Assuntos
Aedes/embriologia , Aedes/metabolismo , Embrião não Mamífero/metabolismo , Animais , Desenvolvimento Embrionário , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Via de Pentose Fosfato
5.
Mem Inst Oswaldo Cruz ; 104(1): 124-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19274388

RESUMO

Despite its vector importance little attention is given to Aedes aegypti embryonic development. In this study, temperature influence on time course of Ae. aegypti larvae hatching and egg viability were evaluated. The dormancy state at the end of embryogenesis could be interrupted with a proper stimulus. Temperatures tested ranged between 12-36 degrees C; the maximum temperature limit is 35 degrees C and the minimum one is below 12 degrees C. Egg viability between 16-31 degrees C was above 80%. The definition of physiological embryonic parameters at this temperature range corroborates Ae. aegypti presence on tropical and subtropical world regions.


Assuntos
Aedes/embriologia , Temperatura , Animais
6.
Mem. Inst. Oswaldo Cruz ; 104(1): 124-126, Feb. 2009. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-507198

RESUMO

Despite its vector importance little attention is given to Aedes aegypti embryonic development. In this study, temperature influence on time course of Ae. aegypti larvae hatching and egg viability were evaluated. The dormancy state at the end of embryogenesis could be interrupted with a proper stimulus. Temperatures tested ranged between 12-36°C; the maximum temperature limit is 35°C and the minimum one is below 12°C. Egg viability between 16-31°C was above 80 percent. The definition of physiological embryonic parameters at this temperature range corroborates Ae. aegypti presence on tropical and subtropical world regions.


Assuntos
Animais , Aedes/embriologia , Temperatura
7.
BMC Dev Biol ; 8: 82, 2008 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-18789161

RESUMO

BACKGROUND: One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. RESULTS: We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. CONCLUSION: In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle.


Assuntos
Aedes/embriologia , Quitina/fisiologia , Dessecação , Óvulo/crescimento & desenvolvimento , Aedes/química , Aedes/metabolismo , Sequência de Aminoácidos , Animais , Quitina/química , Quitina Sintase/biossíntese , Quitina Sintase/genética , Dengue/transmissão , Proteínas do Ovo/química , Proteínas do Ovo/genética , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Dados de Sequência Molecular , Óvulo/química , Splicing de RNA , Fatores de Tempo
8.
Artigo em Inglês | MEDLINE | ID: mdl-16904922

RESUMO

Glucose metabolism plays an essential role in the physiology and development of almost all living organisms. In the present study we investigated glucose metabolism during the embryogenesis of the hard tick Boophilus microplus. An increase in glucose and glycogen content during the embryonic development of B. microplus was detected and shown to be due to the high enzyme activity of both gluconeogenesis and glycolytic pathways. Glucose 6-phosphate (G-6P), formed by hexokinase, is driven mainly to pentose-phosphate pathway, producing fundamental substrates for cellular biosynthesis. We detected an increase in glucose 6-phosphate dehydrogenase and pyruvate kinase activities after embryo cellularization. Accumulation of key metabolites such as glycogen and glucose was monitored and revealed that glycogen content decreases from day 1 up to day 6, as the early events of embryogenesis take place, and increases after the formation of embryo cellular blastoderm on day 6. Glucose and guanine (a sub-product of amino acids degradation in arachnids) accumulate almost concomitantly. The activity of phosphoenolpyruvate carboxykinase was increased after embryo cellularization. Taken together these data indicate that glycogen and glucose, formed during B. microplus embryogenesis after blastoderm formation, are produced by intense gluconeogenesis.


Assuntos
Embrião não Mamífero/metabolismo , Glucose/metabolismo , Ixodidae/embriologia , Animais , Metabolismo Energético , Feminino , Gluconeogênese , Glicogênio/metabolismo , Glicólise , Via de Pentose Fosfato , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA