Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Inorg Chem ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776972

RESUMO

A series of heterobimetallic lantern complexes, [PtFe(SOCR)4(pyX)] where R = Me, X = H (1), X = NH2 (2), X = SMe (3); R = Ph, X = H (4), X = NH2 (5), X = SMe (6), have been prepared and characterized spectroscopically. Compounds 1, 4, and 5 are reported herein for the first time. The high-spin iron(II) sites of 1-6 have been investigated using 57Fe Mössbauer spectroscopy. Although the isomer shift of these species is nearly identical, their quadrupole splitting exhibits a much larger variation. Moreover, the zero-field Mössbauer spectra of 3-5 show surprising changes over time which are likely indicative of small structural distortions. The field dependent Mössbauer study of 1 and 6 revealed a zero field splitting (ZFS) characterized by a relatively large and positive D value. The combined Density Functional Theory (DFT) and ab initio Complete Active Space Self-Consistent Field (CASSCF) investigation of 1-6 indicates that their ground state is best described using a linear combination of {|xz⟩, |yz⟩} states. Our theoretical analysis suggests that the ZFSs and magnitude of the quadrupole splitting of 1-6 are determined by the spin-orbit coupling of the three lowest orbital states which have a T2g parentage.

2.
J Am Chem Soc ; 146(18): 12365-12374, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656163

RESUMO

Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.


Assuntos
Cisteína , Ouro , Cisteína/química , Ouro/química , Peptídeos/química , Compostos Organoáuricos/química , Compostos Organoáuricos/síntese química , Estrutura Molecular
3.
Molecules ; 28(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894575

RESUMO

An aqueous Cu2+ and Zn2+ indicator is reported based on copolymerizing aminopyridine ligands and the environment-sensitive dansyl fluorophore into the responsive polymer poly(N-isopropylacrylamide) (PNIPAm). The metal ion binding creates charge and solvation that triggers PNIPAm's thermal phase transition from hydrophobic globule to hydrophilic open coil. As a basis for sensing the metal-binding, the dansyl fluorescence emission spectra provide a signal at ca. 530 nm and a signal at 500 nm for the hydrophobic and hydrophilic environment, respectively, that are ratiometrically interpreted. The synthesis of the title pyridylethyl-pyridylmethyl-amine ligand (acronym PEPMA) with a 3-carbon linker to the copolymerizable group, aminopropylacrylamide (PEPMA-C3-acrylamide), is reported, along with a nonpolymerizable model ligand derivative. The response of the polymer is validated by increasing temperature from 25 °C to 49 °C, which causes a shift in maximum emission wavelength from 536 nm to 505 nm, along with an increase in the ratio of emission intensity of 505 nm/536 nm from 0.77 to 1.22 (λex = 330 nm) as the polymer releases water. The addition of divalent Cu or Zn to the indicator resulted in a dansyl emission shift of 10 nm to a longer wavelength, accompanied by fluorescence quenching in the case of Cu2+. The addition of EDTA to the Cu2+-loaded indicator reversed the fluorescence shift at 25 °C to 35 °C. The affinities of Cu2+ and Zn2+ for the PEPMA derivatives are log Kf = 11.85 and log Kf = 5.67, respectively, as determined by potentiometric titration. The single-crystal X-ray structure of the Cu2+-PEPMA derivative is five-coordinate, of-geometry intermediate between square-pyramidal and trigonal-bipyramidal, and is comparable to that of Cu2+ complexes with similar formation constants.

4.
Chem Asian J ; 18(24): e202300788, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37883375

RESUMO

The formation of amide bonds is an important process since this linkage is an essential component in proteins, pharmaceuticals, and other medicinally and biologically significant molecules. Recently, it was demonstrated that germylamines R3 GeNR'2 were useful reagents for the conversion of acid fluorides to amides. This transformation occurs readily at room temperature and has a low activation energy. In the present study, the versatility of this amidation reaction with aryl acid fluorides is investigated. A series of thirteen acid fluorides with various substituents on the aromatic ring were reacted with the germylamine Ph3 GeNMe2 and twelve of these were converted to the corresponding amides in high yields, the exception being 1,4-benzenedicarbonyl difluoride. The germylamines Bun 3 GeNMe2 and Pri 3 GeNMe2 also could be used for this interconversion, and both of these species successfully converted 1,4-benzenedicarbonyl difluoride to the corresponding amide. In addition, the crystal structure of Ph3 GeNMe2 is reported. This represents one of only three crystallographically characterized germylamines. The synthesis and 19 F NMR characterization of three fluorogermanes R3 GeF (R=Bun , Pri , and Mes) are also reported herein.

5.
Inorg Chem ; 62(37): 15084-15093, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37667823

RESUMO

We report the synthesis and characterization of various compounds containing the 1,7,9-hydroxylated closo-dodecahydrododecaborate (B12H9(OH)32-) cluster motif. Specifically, we show how the parent compound can be synthesized on the multigram scale and further perhalogenated, leading to a new class of vertex-differentiated weakly coordinating anions. We show that a postmodification of the hydroxyl groups by alkylation affords further opportunities for tailoring these anions' stability, steric bulk, and solubility properties. The resulting dodecaborate-based salts were subjected to a full thermal and electrochemical stability evaluation, showing that many of these anions maintain thermal stability up to 500 °C and feature no redox activity below ∼1 V vs Fc/Fc+. Mixed hydroxylated/halogenated clusters show enhanced solubility compared to their purely halogenated analogs and retain weakly coordinating properties in the solid state, as demonstrated by ionic conductivity measurements of their Li+ salts.

6.
Molecules ; 28(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37630399

RESUMO

3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2), [Fe(C5H5)(C24H25O3)], crystallizes in the monoclinic space group C2. The cyclopentadienyl (Cp) rings adopt a nearly eclipsed conformation, and the Cp plane is tilted by 87.66° with respect to the substituted phenyl plane. An average Fe-C(Cp) bond length of 2.040(13) Å was determined, similar to the one reported for ferrocene. Hirshfeld surfaces and two-dimensional fingerprint plots were generated to analyze weak intermolecular C-H···π and C-H···O interactions. Density functional theory studies revealed a 1.15 kcal/mol rotational barrier for the C3-O1 single bound. Fluorescence quenching studies and in silico docking studies suggest that human serum albumin forms a complex with 2 via a static mechanism dominated by van der Waals interactions and hydrogen bonding interactions.


Assuntos
Pesquisa , Albumina Sérica Humana , Humanos , Fluorescência , Ligação de Hidrogênio
7.
Chem Sci ; 14(30): 8187-8195, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37538819

RESUMO

There is considerable interest in MnOHx moieties, particularly in the stepwise changes in those O-H bonds in tandem with Mn oxidation state changes. The reactivity of aquo-derived ligands, {MOHx}, is also heavily influenced by the electronic character of the other ligands. Despite the prevalence of oxygen coordination in biological systems, preparation of mononuclear Mn complexes of this type with all O-donors is rare. Herein, we report several Mn complexes with perfluoropinacolate (pinF)2- including the first example of a crystallographically characterized mononuclear {Mn(iii)OH} with all O-donors, K2[Mn(OH)(pinF)2], 3. Complex 3 is prepared via deprotonation of K[Mn(OH2)(pinF)2], 1, the pKa of which is estimated to be 18.3 ± 0.3. Cyclic voltammetry reveals quasi-reversible redox behavior for both 1 and 3 with an unusually large ΔEp, assigned to the Mn(iii/ii) couple. Using the Bordwell method, the bond dissociation free energy (BDFE) of the O-H bond in {Mn(ii)-OH2} is estimated to be 67-70 kcal mol-1. Complex 3 abstracts H-atoms from 1,2-diphenylhydrazine, 2,4,6-TTBP, and TEMPOH, the latter of which supports a PCET mechanism. Under basic conditions in air, the synthesis of 1 results in K2[Mn(OAc)(pinF)2], 2, proposed to result from the oxidation of Et2O to EtOAc by a reactive Mn species, followed by ester hydrolysis. Complex 3 alone does not react with Et2O, but addition of O2 at low temperature effects the formation of a new chromophore proposed to be a Mn(iv) species. The related complexes K(18C6)[Mn(iii)(pinF)2], 4, and (Me4N)2[Mn(ii)(pinF)2], 5, have also been prepared and their properties discussed in relation to complexes 1-3.

8.
Chempluschem ; 88(2): e202200450, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36782373

RESUMO

Two hypervalent trifluoromethyl organobismuth complexes were prepared from commercially available chiral amines, (R)-1-cyclohexylethylamine and (1R, 2R, 3R, 5S)-(-)-isopinocampheylamine; however, only the complex from the latter amine was prepared as a single stereoisomer. Both organobismuth complexes were fully characterized by NMR spectroscopy and single-crystal X-ray crystallography, revealing that the structures were similar to previously reported complexes with a hypervalent Bi-N bond. The complexes were catalytically active in olefin difluorocarbenation with Ruppert-Prakash reagent (TMS-CF3 ) used as a terminal source of CF2 . The catalyst derived from isopinocampheylamine was screened with three prochiral olefins of various reactivity in DCM and toluene. All reactions afforded the 1,1-difluorocyclopropanes in good yields, but no enantiomeric excess was observed.

9.
Dalton Trans ; 51(24): 9223-9228, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670471

RESUMO

The dynamic photoluminescence properties, and potential quenching mechanisms, of anti-B18H22, 4,4'-Br2-anti-B18H20, and 4,4'-I2-anti-B18H20 are investigated in solution and polymer films. UV stability studies of the neat powders show no decomposition occurring after intense 7 day light soaking. In contrast, clusters incorporated into polymer films are found to degrade into smaller borane fragments under the same irradiation conditions. To highlight the utility of these compounds, we leverage their favorable optical properties in a prototype UV imaging setup.

10.
Cell Rep Phys Sci ; 3(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35265868

RESUMO

Preventing spontaneous crystallization of supersaturated solutions by additives is of critical interest to successful process design and implementation, with numerous applications in chemical, pharmaceutical, medical, pigment, and food industries, but challenges remain in laboratory and industry settings and fundamental understanding is lacking. When copresented with antifreeze proteins (AFPs), otherwise spontaneously crystallizing osmolytes are maintained at high supersaturations for months in over-wintering organisms. Thus, we here explore the inhibition phenomenon by AFPs, using persistent crystallization of a common sugar alcohol, D-mannitol, as a case study. We report experimentally that DAFP1, an insect AFP, completely inhibits D-mannitol nucleation. Computer simulations reveal a new mechanism for crystallization inhibition where the population of the crystal-forming conformers are selectively bound and randomized in solution by hydrogen bonding to the protein surface. These results highlight the advantages of using natural polymers to address crystallization inhibition challenges and suggest new strategies in controlling the nucleation processes.

11.
Science ; 375(6587): 1393-1397, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324298

RESUMO

The diagonal relationship in the periodic table between phosphorus and carbon has set an expectation that the triple-bonded diatomic diphosphorus molecule (P2) should more closely mimic the attributes of acetylene (HC≡CH) rather than its group 15 congener dinitrogen (N2). Although acetylene has well-documented coordination chemistry with mononuclear transition metals, coordination complexes that feature P2 bound to a single metal center have remained elusive. We report the isolation and x-ray crystallographic characterization of a mononuclear iron complex featuring P2 coordination in a side-on, η2-binding mode. An analogous η2-bound bis-timethylsilylacetylene iron complex is reported for comparison. Nuclear magnetic resonance, infrared, and Mössbauer spectroscopic analysis-in conjunction with density functional theory calculations-demonstrate that η2-P2 and η2-acetylene ligands exert a similar electronic demand on mononuclear iron centers but exhibit different reactivity profiles.

12.
J Fluoresc ; 32(3): 961-967, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218474

RESUMO

Nerve gas mimic binding with Rhodamine B ethylenediamine (1) was studied in organic media. Binding of the nerve gas mimic, diethyl chlorophosphate (DCP), with the probe generated a non-fluorescent intermediate and a fluorescent product. Fluorescent and non-fluorescent products generated were identified using mass spectrometry and X-ray crystallography. Time-dependent density functional theory calculations were also used to investigate the electronic structure of the fluorescent probe in the ground and lowest lying π → π* singlet excited state. Though good agreement between theory and experiment can be obtained for the intense peak in the experimental spectrum using non-hybrid functionals, care must be taken when modelling these complexes due to the appearance of an n → π* transition that is too low in energy and appears to fall in the shoulders of the π → π* transitions.


Assuntos
Agentes Neurotóxicos , Etilenodiaminas , Corantes Fluorescentes/química , Agentes Neurotóxicos/química , Rodaminas/química
13.
Chem Commun (Camb) ; 58(8): 1159-1162, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34981095

RESUMO

A bulky 1,4-di-iodobenzene having four adjacent para-tBu-C6H4 group (Ar') substituents (1) was used to prepare the di-hypervalent iodine compound 1,4-[I(OAc)2]2-2,3,5,6-Ar'4-C6 (2). Despite the steric encumbrance of the iodine center by the flanking aryl substituents, compound 2 undergoes ready cyclization under mild conditions (excess CF3COOH at 55 °C, 30 min) to afford a dicyclic di-iodonium di-triflate salt 3. The single crystal structures of compounds 2 and 3 were examined and compared to the formerly characterized precursor 1. The para-tert-butyl groups on these compounds also render the compounds more soluble than multifunctional hypervalent iodine (HVI) compounds. HVI compounds having multiple iodine(III) centers are increasingly of interest for applications as recyclable reagents, materials precursors, and as Lewis acids.

14.
RSC Adv ; 13(1): 594-601, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605673

RESUMO

2-R-1H-1,3-Benzazaphospholes (R-BAPs) are an interesting class of σ2P heterocycles containing P[double bond, length as m-dash]C bonds. While closely related 2-R-1,3-benzoxaphospholes (R-BOPs) have been shown to be highly photoluminescent materials depending on specific R substituents, photoluminescence of R-BAPs has been previously limited to an example having a fused carbazole ring system. Here we detail the synthesis and structural characterization of a new R-BAP (3c, R = 2,2'-dithiophene), and compare its photoluminescence against two previously reported R-BAPs (3a, R, R' = Me and 3b, R = 2-thiophene). The significant fluorescence displayed by the thiophene derivatives 3b (φ = 0.53) and 3c (φ = 0.12) stands in contrast to the weakly emissive methyl substituted analogue 3a (φ = 0.08). Comparative computational investigations of 3a-c offer insights into the interplay between structure-function relationships affecting excited state relaxation processes.

15.
Angew Chem Int Ed Engl ; 61(1): e202110753, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34755431

RESUMO

Tetrahedral main-group compounds are normally configurationally stable, but P-epimerization of the chiral phosphiranium cations syn- or anti-[Mes*P(Me)CH2 CHPh][OTf] (Mes*=2,4,6-(t-Bu)3 C6 H2 ) occurred under mild conditions at 60 °C in CD2 Cl2 , resulting in isomerization to give a syn-enriched equilibrium mixture. Ion exchange with excess [NBu4 ][Δ-TRISPHAT] (Δ-TRISPHAT=Δ-P(o-C6 Cl4 O2 )3 ) followed by chromatography on silica removed [NBu4 ][OTf] and gave mixtures of syn- and anti-[Mes*P(Me)CH2 CHPh][Δ-TRISPHAT]⋅x[NBu4 ][Δ-TRISPHAT]. NMR spectroscopy showed that isomerization proceeded with epimerization at P and retention at C. DFT calculations are consistent with a mechanism involving P-C cleavage to yield a hyperconjugation-stabilized carbocation, pyramidal inversion promoted by σ-interaction of the P lone pair with the neighboring ß-carbocation, and ring closure with inversion of configuration at P.

16.
Inorg Chem ; 60(24): 19165-19174, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855370

RESUMO

Chalcogen-containing carboranes have been known for several decades and possess stable exopolyhedral B(9)-Se and B(9)-Te σ bonds despite the electron-donating ability of the B(9) vertex. While these molecules are known, little has been done to thoroughly evaluate their electrophilic and nucleophilic behavior. Herein, we report an assessment of the electrophilic reactivity of m-carboranylselenyl(II), -tellurenyl(II), and -tellurenyl(IV) chlorides and establish their reactivity pattern with Grignard reagents, alkenes, alkynes, enolates, and electron-rich arenes. These electrophilic reactions afford unique electron-rich B-Y-C (Y = Se, Te) bonding motifs not commonly found before. Furthermore, we show that m-carboranylselenolate, and even m-carboranyltellurolate, can be competent nucleophiles and participate in nucleophilic aromatic substitution reactions. Arene substitution chemistry is shown to be further extended to electron-rich species via palladium-mediated cross-coupling chemistry.

17.
J Am Chem Soc ; 143(40): 16439-16447, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582679

RESUMO

The achievement of atomic control over the organic-inorganic interface is key to engineering electronic and spintronic properties of molecular devices. We leverage insights from inorganic chemistry to create hard-soft acid-base (HSAB) theory-derived design principles for incorporation of single molecules onto metal electrodes. A single molecule circuit is assembled via a bond between an organic backbone and an under-coordinated metal atom of the electrode surface, typically Au. Here, we study molecular composition factors affecting the junction assembly of coordination complexes containing transition metals atoms on Au electrodes. We employ hetero- and homobimetallic lantern complexes and systematically change the coordination environment to vary the character of the intramolecular bonds relative to the electrode-molecule interaction. We observe that trends in the robustness and chemical selectivity of single molecule junctions formed with a range of linkers correlate with HSAB principles, which have traditionally been used to guide atomic arrangements in the synthesis of coordination complexes. We find that this similarity between the intermolecular electrode-molecule bonding in a molecular circuit and the intramolecular bonds within a coordination complex has implications for the design of metal-containing complexes compatible with electrical measurements on metal electrodes. Our results here show that HSAB principles determine which intramolecular interactions can be compromised by inter molecule-electrode coordination; in particular on Au electrodes, soft-soft metal-ligand bonding is vulnerable to competition from soft-soft Au-linker bonding in the junction. Neutral donor-acceptor intramolecular bonds can be tuned by the Lewis acidity of the transition metal ion, suggesting future synthetic routes toward incorporation of transition metal atoms into molecular junctions for increased functionality of single molecule devices.

18.
Inorg Chem ; 60(17): 13320-13331, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382776

RESUMO

Tetraphenylazadipyrromethenes (ADPs) are attractive near-infrared (NIR) dyes because of their simple synthesis and exceptional optical and electronic properties. The typical BF2 and less explored intramolecular BO coordination planarize the molecule, making them promising π-conjugated materials for organic electronic applications. However, their use has been mostly limited to vacuum-deposited devices. To improve the properties, we synthesized and characterized a series of ADP complexes and used density functional theory calculations to further explain the properties. Hexyloxy solubilizing groups increase the complexes' solubility in organic solvents and enable film formation from solution. Phenylethynyls at the pyrrolic positions extend π conjugation, red-shift absorption and emission peaks, and increase the ionization potential (IP) and electron affinity. When the properties of complexes with hexyloxy and phenyethynyl substitutions are compared, the BO complex is more planar and has a smaller IP than the corresponding BF2 complex because of increased electron density on the proximal phenyls. The BO complex has an unusual combination of properties: a solution λmax of 781 nm, emission at 805 nm, a small Stokes shift, and a quantum yield of 6%. It forms transparent films with a low optical gap of 1.22 eV. This new complex is a promising candidate for transparent solar cells and NIR photodetectors.

19.
Inorg Chem ; 60(17): 13376-13387, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382778

RESUMO

A new template condensation reaction has been discovered in a mixture of Pt(II), thiobenzamide, and base. Four complexes of the general form [Pt(ctaPhR)2], R = CH3 (1a), H (1b), F (1c), Cl (1d), cta = condensed thioamide, have been prepared under similar conditions and thoroughly characterized by 1H NMR and UV-vis-NIR spectroscopy, (spectro)electrochemistry, elemental analysis, and single-crystal X-ray diffraction. The ligand is redox active and can be reduced from the initial monoanion to a dianionic and then trianionic state. Chemical reduction of 1a with [Cp2Co] yielded [Cp2Co]2[Pt(ctaPhCH3)2], [Cp2Co]2[1a], which has been similarly characterized with the addition of EPR spectroscopy and SQUID magnetization. The singly reduced form containing [1a]1-, (nBu4N)[Pt(ctaPhCH3)2], has been generated in situ and characterized by UV-vis and EPR spectroscopies. DFT studies of 1b, [1b]1-, and [1b]2- confirm the location of additional electrons in exclusively ligand-based orbitals. A detailed analysis of this redox-active ligand, with emphasis on the characteristics that favor noninnocent behavior in six-membered chelate rings, is included.

20.
Organometallics ; 40(14): 2311-2319, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34433997

RESUMO

Tetrahydrothiophene-functionalized N,S-heterocyclic carbene palladium(II) complexes are synthesized through an unexpected rearrangement that proceeds with palladium(II) trifluoroacetate and not with palladium(II) acetate, palladium(II) bromide, or palladium(II) chloride. A series of these complexes were isolated and characterized by X-ray crystallography. The mechanism of formation of these [3.2.1]-palladabicycles was explored, and the catalytic capabilities of these complexes were demonstrated in representative C-C coupling reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA