Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Struct Mol Biol ; 31(5): 742-746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769465

RESUMO

Hexasomes are non-canonical nucleosomes that package DNA with six instead of eight histones. First discovered 40 years ago as a consequence of transcription, two near-atomic-resolution cryo-EM structures of the hexasome in complex with the chromatin remodeler INO80 have now started to unravel its mechanistic impact on the regulatory landscape of chromatin. Loss of one histone H2A-H2B dimer converts inactive nucleosomes into distinct and favorable substrates for ATP-dependent chromatin remodeling.


Assuntos
Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , Histonas , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Nucleossomos/ultraestrutura , Histonas/metabolismo , Histonas/química , Modelos Moleculares , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , DNA/metabolismo , DNA/química
2.
Commun Biol ; 7(1): 148, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310140

RESUMO

TRF2 is a component of shelterin, a telomere-specific protein complex that protects the ends of mammalian chromosomes from DNA damage signaling and improper repair. TRF2 functions as a homodimer and its interaction with telomeric DNA has been studied, but its full-length DNA-binding properties are unknown. This study examines TRF2's interaction with single-DNA strands and focuses on the conformation of the TRF2-DNA complex and TRF2's preference for DNA chirality. The results show that TRF2-DNA can switch between extended and compact conformations, indicating multiple DNA-binding modes, and TRF2's binding does not have a strong preference for DNA supercoiling chirality when DNA is under low tension. Instead, TRF2 induces DNA bending under tension. Furthermore, both the N-terminal domain of TRF2 and the Myb domain enhance its affinity for the telomere sequence, highlighting the crucial role of multivalent DNA binding in enhancing its affinity and specificity for telomere sequence. These discoveries offer unique insights into TRF2's interaction with telomeric DNA.


Assuntos
Complexo Shelterina , Proteína 2 de Ligação a Repetições Teloméricas , Animais , Telômero/genética , Telômero/metabolismo , DNA/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Mamíferos/genética
3.
RSC Chem Biol ; 4(12): 1096-1110, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033728

RESUMO

DAXX (Death Domain Associated Protein 6) is frequently upregulated in various common cancers, and its suppression has been linked to reduced tumor progression. Consequently, DAXX has gained significant interest as a therapeutic target in such cancers. DAXX is known to function in several critical biological pathways including chromatin remodelling, transcription regulation, and DNA repair. Leveraging structural information, we have designed and developed a novel set of stapled/stitched peptides that specifically target a surface on the N-terminal helical bundle domain of DAXX. This surface serves as the anchor point for binding to multiple interaction partners, such as Rassf1C, p53, Mdm2, and ATRX, as well as for the auto-regulation of the DAXX N-terminal SUMO interaction motif (SIM). Our experiments demonstrate that these peptides effectively bind to and inhibit DAXX with a higher affinity than the known interaction partners. Furthermore, these peptides release the auto-inhibited SIM, enabling it to interact with SUMO-1. Importantly, we have developed stitched peptides that can enter cells, maintaining their intracellular concentrations at nanomolar levels even after 24 hours, without causing any membrane perturbation. Collectively, our findings suggest that these stitched peptides not only serve as valuable tools for probing the molecular interactions of DAXX but also hold potential as precursors to the development of therapeutic interventions.

4.
Mol Cell ; 83(8): 1200-1203, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084710

RESUMO

Daniela Rhodes spoke with Molecular Cell about the discovery of the double helical structure of DNA in 1953 and its impact on modern science. She discusses how she started working with DNA and chromatin as a structural biologist, some of the landmark studies that were inspired by the double helix, and the exciting challenges ahead.


Assuntos
Cromatina , DNA , DNA/genética , DNA/química , Cromatina/genética , Conformação de Ácido Nucleico
5.
J Exp Clin Cancer Res ; 41(1): 273, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36096808

RESUMO

BACKGROUND: Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53-/- mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. METHODS: We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. RESULTS: In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. CONCLUSIONS: Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker.


Assuntos
Lamina Tipo A , Progéria , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Camundongos , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Telômero/metabolismo
6.
Nature ; 609(7929): 1048-1055, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104563

RESUMO

Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response1-5. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres. We also obtained the cryogenic electron microscopy structure of the condensed telomeric tetranucleosome and its dinucleosome unit. The structure displayed close stacking of nucleosomes with a columnar arrangement, and an unusually short nucleosome repeat  length that comprised about 132 bp DNA wound in a continuous superhelix around histone octamers. This columnar structure is primarily stabilized by the H2A carboxy-terminal and histone amino-terminal tails in a synergistic manner. The columnar conformation results in exposure of the DNA helix, which may make it susceptible to both DNA damage and the DNA damage response. The conformation also exists in an alternative open state, in which one nucleosome is unstacked and flipped out, which exposes the acidic patch of the histone surface. The structural features revealed in this work suggest mechanisms by which protein factors involved in telomere maintenance can access telomeric chromatin in its compact form.


Assuntos
Cromatina , DNA , Histonas , Conformação Molecular , Telômero , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Microscopia Eletrônica , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Imagem Individual de Molécula , Telômero/química , Telômero/genética , Telômero/ultraestrutura
7.
PLoS One ; 17(2): e0264073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176105

RESUMO

Telomeres are protein-DNA complexes that protect the ends of linear eukaryotic chromosomes. Mammalian telomeric DNA consists of 5'-(TTAGGG)n-3' double-stranded repeats, followed by up to several hundred bases of a 3' single-stranded G-rich overhang. The G-rich overhang is bound by the shelterin component POT1 which interacts with TPP1, the component involved in telomerase recruitment. A previously published crystal structure of the POT1 N-terminal half bound to the high affinity telomeric ligand 5'-TTAGGGTTAG-3' showed that the first six nucleotides, TTAGGG, are bound by the OB1 fold, while the adjacent OB2 binds the last four, TTAG. Here, we report two cryo-EM structures of full-length POT1 bound by the POT1-binding domain of TPP1. The structures differ in the relative orientation of the POT1 OB1 and OB2, suggesting that these two DNA-binding OB folds take up alternative conformations. Supporting DNA binding studies using telomeric ligands in which the OB1 and OB2 binding sites were spaced apart, show that POT1 binds with similar affinities to spaced or contiguous binding sites, suggesting plasticity in DNA binding and a role for the alternative conformations observed. A likely explanation is that the structural flexibility of POT1 enhances binding to the tandemly arranged telomeric repeats and hence increases telomere protection.


Assuntos
Microscopia Crioeletrônica/métodos , DNA de Cadeia Simples/genética , Complexo Shelterina/química , Proteínas de Ligação a Telômeros/química , Telômero/genética , Sítios de Ligação , DNA de Cadeia Simples/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Complexo Shelterina/genética , Complexo Shelterina/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
PLoS Genet ; 17(8): e1009757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449766

RESUMO

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mitose/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos , Transporte Proteico , Fuso Acromático/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Biol Chem ; 296: 100625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831416

RESUMO

Class switch recombination (CSR) is the process by which B cells switch production from IgM/IgD to other immunoglobulin isotypes, enabling them to mount an effective immune response against pathogens. Timely resolution of CSR prevents damage due to an uncontrolled and prolonged immune response. While many positive regulators of CSR have been described, negative regulators of CSR are relatively unknown. Using an shRNA library screen targeting more than 28,000 genes in a mouse B cell line, we have identified a novel, uncharacterized protein of 82kD (KIAA1841, NM_027860), which we have named SANBR (SANT and BTB domain regulator of CSR), as a negative regulator of CSR. The purified, recombinant BTB domain of SANBR exhibited characteristic properties such as homodimerization and interaction with corepressor proteins, including HDAC and SMRT. Overexpression of SANBR inhibited CSR in primary mouse splenic B cells, and inhibition of CSR is dependent on the BTB domain while the SANT domain is largely dispensable. Thus, we have identified a new member of the BTB family that serves as a negative regulator of CSR. Future investigations to identify transcriptional targets of SANBR in B cells will reveal further insights into the specific mechanisms by which SANBR regulates CSR as well as fundamental gene regulatory activities of this protein.


Assuntos
Domínio BTB-POZ , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina , Linfoma de Células B/patologia , Recombinação Genética , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Linfoma de Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Homologia de Sequência
11.
Nucleic Acids Res ; 48(10): 5383-5396, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32374876

RESUMO

Telomeres protect the ends of our chromosomes and are key to maintaining genomic integrity during cell division and differentiation. However, our knowledge of telomeric chromatin and nucleosome structure at the molecular level is limited. Here, we aimed to define the structure, dynamics as well as properties in solution of the human telomeric nucleosome. We first determined the 2.2 Å crystal structure of a human telomeric nucleosome core particle (NCP) containing 145 bp DNA, which revealed the same helical path for the DNA as well as symmetric stretching in both halves of the NCP as that of the 145 bp '601' NCP. In solution, the telomeric nucleosome exhibited a less stable and a markedly more dynamic structure compared to NCPs containing DNA positioning sequences. These observations provide molecular insights into how telomeric DNA forms nucleosomes and chromatin and advance our understanding of the unique biological role of telomeres.


Assuntos
Nucleossomos/química , Telômero/química , Cristalografia por Raios X , DNA/química , Humanos , Modelos Moleculares
12.
Nucleic Acids Res ; 48(8): 4562-4571, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187364

RESUMO

G-quadruplexes are four-stranded nucleic acid structures involved in multiple cellular pathways including DNA replication and telomere maintenance. Such structures are formed by G-rich DNA sequences typified by telomeric DNA repeats. Whilst there is evidence for proteins that bind and regulate G-quadruplex formation, the molecular basis for this remains poorly understood. The budding yeast telomeric protein Rap1, originally identified as a transcriptional regulator functioning by recognizing double-stranded DNA binding sites, was one of the first proteins to be discovered to also bind and promote G-quadruplex formation in vitro. Here, we present the 2.4 Å resolution crystal structure of the Rap1 DNA-binding domain in complex with a G-quadruplex. Our structure not only provides a detailed insight into the structural basis for G-quadruplex recognition by a protein, but also gives a mechanistic understanding of how the same DNA-binding domain adapts to specifically recognize different DNA structures. The key observation is the DNA-recognition helix functions in a bimodal manner: In double-stranded DNA recognition one helix face makes electrostatic interactions with the major groove of DNA, whereas in G-quadruplex recognition a different helix face is used to make primarily hydrophobic interactions with the planar face of a G-tetrad.


Assuntos
DNA/química , Quadruplex G , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Telômeros/química , Fatores de Transcrição/química , DNA/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Eletricidade Estática , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo
13.
Nucleic Acids Res ; 47(14): 7494-7501, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31216020

RESUMO

Saccharomyces cerevisiae Pif1 (ScPif1) is known as an ATP-dependent DNA helicase that plays critical roles in a number of important biological processes such as DNA replication, telomere maintenance and genome stability maintenance. Besides its DNA helicase activity, ScPif1 is also known as a single-stranded DNA (ssDNA) translocase, while how ScPif1 translocates on ssDNA is unclear. Here, by measuring the translocation activity of individual ScPif1 molecules on ssDNA extended by mechanical force, we identified two distinct types of ssDNA translocation. In one type, ScPif1 moves along the ssDNA track with a rate of ∼140 nt/s in 100 µM ATP, whereas in the other type, ScPif1 is immobilized to a fixed location of ssDNA and generates ssDNA loops against force. Between the two, the mobile translocation is the major form at nanomolar ScPif1 concentrations although patrolling becomes more frequent at micromolar concentrations. Together, our results suggest that ScPif1 translocates on extended ssDNA in two distinct modes, primarily in a 'mobile' manner.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , DNA Helicases/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Modelos Biológicos , Conformação de Ácido Nucleico , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Mecânico
14.
Cell Rep ; 27(2): 387-399.e7, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970244

RESUMO

LSD1 and LSD2 are homologous histone demethylases with opposite biological outcomes related to chromatin silencing and transcription elongation, respectively. Unlike LSD1, LSD2 nucleosome-demethylase activity relies on a specific linker peptide from the multidomain protein NPAC. We used single-particle cryoelectron microscopy (cryo-EM), in combination with kinetic and mutational analysis, to analyze the mechanisms underlying the function of the human LSD2/NPAC-linker/nucleosome complex. Weak interactions between LSD2 and DNA enable multiple binding modes for the association of the demethylase to the nucleosome. The demethylase thereby captures mono- and dimethyl Lys4 of the H3 tail to afford histone demethylation. Our studies also establish that the dehydrogenase domain of NPAC serves as a catalytically inert oligomerization module. While LSD1/CoREST forms a nucleosome docking platform at silenced gene promoters, LSD2/NPAC is a multifunctional enzyme complex with flexible linkers, tailored for rapid chromatin modification, in conjunction with the advance of the RNA polymerase on actively transcribed genes.


Assuntos
Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Desmetilação , Histona Desmetilases/química , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Enzimas Multifuncionais/química , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleossomos/enzimologia , Nucleossomos/genética , Oxirredutases/química , Oxirredutases/genética , Domínios Proteicos
15.
Mol Cell ; 74(2): 268-283.e5, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30902546

RESUMO

Linker histone H1 has been correlated with transcriptional inhibition, but the mechanistic basis of the inhibition and its reversal during gene activation has remained enigmatic. We report that H1-compacted chromatin, reconstituted in vitro, blocks transcription by abrogating core histone modifications by p300 but not activator and p300 binding. Transcription from H1-bound chromatin is elicited by the H1 chaperone NAP1, which is recruited in a gene-specific manner through direct interactions with activator-bound p300 that facilitate core histone acetylation (by p300) and concomitant eviction of H1 and H2A-H2B. An analysis in B cells confirms the strong dependency on NAP1-mediated H1 eviction for induction of the silent CD40 gene and further demonstrates that H1 eviction, seeded by activator-p300-NAP1-H1 interactions, is propagated over a CCCTC-binding factor (CTCF)-demarcated region through a distinct mechanism that also involves NAP1. Our results confirm direct transcriptional inhibition by H1 and establish a gene-specific H1 eviction mechanism through an activator→p300→NAP1→H1 pathway.


Assuntos
Fator de Ligação a CCCTC/genética , Proteína p300 Associada a E1A/genética , Proteínas/genética , Transcrição Gênica , Acetilação , Linfócitos B/química , Sítios de Ligação , Fator de Ligação a CCCTC/química , Antígenos CD40/genética , Cromatina/química , Cromatina/genética , Proteína p300 Associada a E1A/química , Código das Histonas , Histonas/química , Histonas/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleossomos/química , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas/química , tRNA Metiltransferases
16.
Nat Struct Mol Biol ; 26(2): 85-86, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664739
17.
FEBS Lett ; 593(1): 80-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411342

RESUMO

Class switch recombination (CSR) in B cells involves deletion-recombination at switch (S) region DNA and is important for the diversification of antibody isotypes during an immune response. Here, we identify two NME [NM23/NDPK (nucleoside diphosphate kinase)] isoforms, NME1 and NME2, as novel players in this process. Knockdown of NME2 leads to decreased CSR, while knockdown of the highly homologous NME1 results in increased CSR. Interestingly, these NME proteins also display differential occupancy at S regions during CSR despite their homology; NME1 binds to S regions prior to stimulation, while NME2 binds to S regions only after stimulation. To the best of our knowledge, this represents the first report of a role for these proteins in the regulation of CSR.


Assuntos
Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/química , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Silenciamento de Genes , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região de Troca de Imunoglobulinas , Camundongos , Nucleosídeo NM23 Difosfato Quinases/genética , Ligação Proteica
18.
Nat Commun ; 8(1): 1575, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146919

RESUMO

The 'acidic patch' is a highly electronegative cleft on the histone H2A-H2B dimer in the nucleosome. It is a fundamental motif for protein binding and chromatin dynamics, but the cellular impact of targeting this potentially therapeutic site with exogenous molecules remains unclear. Here, we characterize a family of binuclear ruthenium compounds that selectively target the nucleosome acidic patch, generating intra-nucleosomal H2A-H2B cross-links as well as inter-nucleosomal cross-links. In contrast to cisplatin or the progenitor RAPTA-C anticancer drugs, the binuclear agents neither arrest specific cell cycle phases nor elicit DNA damage response, but rather induce an irreversible, anomalous state of condensed chromatin that ultimately results in apoptosis. In vitro, the compounds induce misfolding of chromatin fibre and block the binding of the regulator of chromatin condensation 1 (RCC1) acidic patch-binding protein. This family of chromatin-modifying molecules has potential for applications in drug development and as tools for chromatin research.


Assuntos
Apoptose/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Nucleossomos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Ligação Proteica
19.
Mol Plant ; 10(10): 1258-1273, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28893714

RESUMO

Temperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood. We show here that the warm ambient temperature transcriptome is dependent upon the HSFA1 clade of Arabidopsis HSFs, which cause a rapid and dynamic eviction of H2A.Z nucleosomes at target genes. A transcriptional cascade results in the activation of multiple downstream stress-responsive transcription factors, triggering large-scale changes to the transcriptome in response to elevated temperature. H2A.Z nucleosomes are enriched at temperature-responsive genes at non-inducible temperature, and thus likely confer inducibility of gene expression and higher responsive dynamics. We propose that the antagonistic effects of H2A.Z and HSF1 provide a mechanism to activate gene expression rapidly and precisely in response to temperature, while preventing leaky transcription in the absence of an activation signal.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Nucleossomos/metabolismo , Temperatura , Aclimatação/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Temperatura Alta , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Transcriptoma
20.
Proc Natl Acad Sci U S A ; 114(29): 7671-7676, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673974

RESUMO

The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.


Assuntos
Cromatina/ultraestrutura , Dano ao DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Proteína BRCA2/genética , Linhagem Celular Tumoral , Cromossomos/ultraestrutura , Reparo do DNA , Replicação do DNA , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Concentração Inibidora 50 , Mutação , Ligação Proteica , Proteômica , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA