Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Mol Med ; 29(11): 875-877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690859

RESUMO

Toxicants such as smoke, biofuel, and pollutants constantly challenge our respiratory health, but little is known about the pathophysiological processes involved. In a new report, Lin et al. provide evidence that our bacterial and fungal lung populations orchestrate the interplay between environmental exposure and lung functions, thereby conditioning health outcomes.

2.
Mycopathologia ; 188(4): 409-412, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227556

RESUMO

Aspergillus fumigatus is a genetically diverse fungal species, which is near ubiquitous in its global distribution and is the major cause of the life-threatening disease invasive aspergillosis. We present 3 de novo genome assemblies that were selected to be representative of the genetic diversity of clinical and environmental A. fumigatus. Sequencing using long-read Oxford Nanopore and subsequent assembly of the genomes yielded 10-23 contigs with an N50 of 4.05 Mbp to 4.93 Mbp.


Assuntos
Aspergilose , Aspergillus fumigatus , Aspergillus fumigatus/genética , Genoma , Aspergilose/microbiologia , Análise de Sequência de DNA
3.
Mycopathologia ; 187(5-6): 497-508, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098829

RESUMO

Respiratory specimens obtained from patients with chronic forms of aspergillosis contain phenotypic variants of azole-resistant Aspergillus fumigatus (ARAF) that co-exist in the airway. Here we aimed to study whether phenotypic variants of ARAF that co-exist in clinical specimens were genetically distinct. A panel of six phenotypic variants of ARAF cultured from two sputum samples collected from two patients with chronic aspergillosis were included. Preliminary identification of all isolates was obtained using MALDI-ToF mass spectrometry and confirmed by AsperGenius® real-time PCR assay. Antifungal susceptibility testing was determined using EUCAST E.Def 9.3 microbroth dilution. Genomic DNA libraries were constructed with the Illumina TruSeq Nano kit. Prepared whole-genome libraries were sequenced on an Illumina HiSeq 2500. Whole genome data were converted into presence/absence of a SNP with respect to the Af293 reference genome. Colonies of ARAF that co-existed in one respiratory sample demonstrated marked phenotypic diversity. Two cyp51A polymorphisms were found among azole-resistant isolates: TR34/L98H/T289A/I364V/G448S was consistently present in four variants with a pan-azole resistant phenotype and TR34/L98H was detected in two variants (itraconazole MIC > 16 mg/L). WGS typing showed that despite marked phenotypic variation, each sample contained a population of highly genetically related azole-resistant A. fumigatus variants. Our SNP analysis suggest that mechanisms additional to genetic-based variation are responsible for phenotypic diversity. Our data demonstrate that the phenotypic variants of ARAF that co-exist in clinical specimens are highly clonal and strongly suggest their origination from a single common ancestor.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Aspergilose/microbiologia , Fenótipo
4.
Life (Basel) ; 10(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260763

RESUMO

Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future.

5.
Front Microbiol ; 9: 2234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294314

RESUMO

Background/Objectives: Aspergillus fumigatus is the leading cause of invasive aspergillosis. Treatment is hindered by the emergence of resistance to triazole antimycotic agents. Here, we present the prevalence of triazole resistance among clinical isolates at a major centralized medical mycology laboratory in London, United Kingdom, in the period 1998-2017. Methods: A large number (n = 1469) of clinical A. fumigatus isolates from unselected clinical specimens were identified and their susceptibility against three triazoles, amphotericin B and three echinocandin agents was carried out. All isolates were identified phenotypically and antifungal susceptibility testing was carried out by using a standard broth microdilution method. Results: Retrospective surveillance (1998-2011) shows 5/1151 (0.43%) isolates were resistant to at least one of the clinically used triazole antifungal agents. Prospective surveillance (2015-2017) shows 7/356 (2.2%) isolates were resistant to at least one triazole antifungals demonstrating an increase in incidence of triazole-resistant A. fumigatus in our laboratory. Among five isolates collected from 2015 to 2017 and available for molecular testing, three harbored TR34/L98H alteration in the cyp51A gene that are associated with the acquisition of resistance in the non-patient environment. Conclusion: These data show that historically low prevalence of azole resistance may be increasing, warranting further surveillance of susceptible patients.

6.
Mycoses ; 61(9): 665-673, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29702751

RESUMO

Infections caused by Rasamsonia argillacea complex have been reported in various clinical settings. Cystic fibrosis (CF) is one of the main underlying conditions. An observational cohort study of CF patients with Rasamsonia in respiratory samples was conducted. Eight isolates from 6 patients were identified as R. argillacea complex and tested for antifungal susceptibility. All isolates had high MICs to voriconazole and posaconazole and low MECs to echinocandins. Four patients experienced lung function decline in the year preceding first Rasamsonia isolation. This continued in the year following first isolation in 3 out of 4 cases. Antifungal therapy was initiated in 2 patients, to which only one exhibited a clinical response. Three out of 6 patients died within 3 years of isolating Rasamsonia. Genotyping suggests that similar genotypes of Rasamsonia can persist in CF airways. Consistent with other fungi in CF, the clinical impact of airway colonisation by Rasamsonia is variable. In certain patients, Rasamsonia may be able to drive clinical decline. In others, though a clear impact on lung function may be difficult to determine, the appearance of Rasamsonia acts as a marker of disease severity. In others it does not appear to have an obvious clinical impact on disease progression.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Doenças Transmissíveis Emergentes/microbiologia , Fibrose Cística/complicações , Farmacorresistência Fúngica , Eurotiales/isolamento & purificação , Pneumopatias Fúngicas/microbiologia , Adulto , Criança , Estudos de Coortes , Equinocandinas/farmacologia , Eurotiales/classificação , Eurotiales/efeitos dos fármacos , Eurotiales/genética , Feminino , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Técnicas de Tipagem Micológica , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-27777756

RESUMO

BACKGROUND: Candida auris is a globally emerging multidrug resistant fungal pathogen causing nosocomial transmission. We report an ongoing outbreak of C. auris in a London cardio-thoracic center between April 2015 and July 2016. This is the first report of C. auris in Europe and the largest outbreak so far. We describe the identification, investigation and implementation of control measures. METHODS: Data on C. auris case demographics, environmental screening, implementation of infection prevention/control measures, and antifungal susceptibility of patient isolates were prospectively recorded then analysed retrospectively. Speciation of C. auris was performed by MALDI-TOF and typing of outbreak isolates performed by amplified fragment length polymorphism (AFLP). RESULTS: This report describes an ongoing outbreak of 50 C. auris cases over the first 16 month (April 2015 to July 2016) within a single Hospital Trust in London. A total of 44 % (n = 22/50) patients developed possible or proven C. auris infection with a candidaemia rate of 18 % (n = 9/50). Environmental sampling showed persistent presence of the yeast around bed space areas. Implementation of strict infection and prevention control measures included: isolation of cases and their contacts, wearing of personal protective clothing by health care workers, screening of patients on affected wards, skin decontamination with chlorhexidine, environmental cleaning with chorine based reagents and hydrogen peroxide vapour. Genotyping with AFLP demonstrated that C. auris isolates from the same geographic region clustered. CONCLUSION: This ongoing outbreak with genotypically closely related C. auris highlights the importance of appropriate species identification and rapid detection of cases in order to contain hospital acquired transmission.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28080986

RESUMO

Aspergillus fungi are the cause of an array of diseases affecting humans, animals and plants. The triazole antifungal agents itraconazole, voriconazole, isavuconazole and posaconazole are treatment options against diseases caused by Aspergillus However, resistance to azoles has recently emerged as a new therapeutic challenge in six continents. Although de novo azole resistance occurs occasionally in patients during azole therapy, the main burden is the aquisition of resistance through the environment. In this setting, the evolution of resistance is attributed to the widespread use of azole-based fungicides. Although ubiquitously distributed, A. fumigatus is not a phytopathogen. However, agricultural fungicides deployed against plant pathogenic moulds such as Fusarium, Mycospaerella and A. flavus also show activity against A. fumigatus in the environment and exposure of non-target fungi is inevitable. Further, similarity in molecule structure between azole fungicides and antifungal drugs results in cross-resistance of A. fumigatus to medical azoles. Clinical studies have shown that two-thirds of patients with azole-resistant infections had no previous history of azole therapy and high mortality rates between 50% and 100% are reported in azole-resistant invasive aspergillosis. The resistance phenotype is associated with key mutations in the cyp51A gene, including TR34/L98H, TR53 and TR46/Y121F/T289A resistance mechanisms. Early detection of resistance is of paramount importance and if demonstrated, either with susceptibility testing or through molecular analysis, azole monotherapy should be avoided. Liposomal amphotericin B or a combination of voriconazole and an echinocandin are recomended for azole-resistant aspergillosis.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.


Assuntos
Aspergilose , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/veterinária , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA