Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 151: 132-143, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220786

RESUMO

Drought is one of the major constraints for soybean production in Brazil. In this study we investigated the physiological traits of two soybean parental genotypes under progressive soil drying and rewetting. The plants were evaluated under full irrigation (control) conditions and under water deficit imposed by suspending irrigation until the plants reached predawn leaf water potentials (Ψam) of -1.0 MPa (moderate) and -1.5 MPa (severe). Physiological analyses showed that these genotypes exhibit different responses to water deficit. The Embrapa 48 genotype reached moderate and severe water potential two days after the BR16 genotype and was able to maintain higher levels of A, ETR and ΦPSII even under deficit conditions. This result was not related to changes in gs, 13C isotopic composition and presence of a more efficient antioxidant system. In addition, Fv/Fm values did not decrease in Embrapa 48 genotype in relation to irrigated condition showing that stress was not causing photochemical inhibition of photosynthesis. The greater reduction in the relative growth of the shoots, with concomitant greater growth of the root system under drought, indicates that the tolerant genotype is able to preferentially allocated carbon to the roots, presenting less damage to photosynthesis. Therefore, the physiological responses revealed that the tolerant genotype postponed leaf dehydration by a mechanism involving a more efficient use and translocation of water from root to shoot to maintain cell homeostasis and photosynthetic metabolism under stress.


Assuntos
Secas , Glycine max/fisiologia , Estresse Fisiológico , Brasil , Genótipo , Fotossíntese , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Água/fisiologia
2.
Plant Physiol ; 180(4): 1912-1929, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31171578

RESUMO

Until they become photoautotrophic juvenile plants, seedlings depend upon the reserves stored in seed tissues. These reserves must be mobilized and metabolized, and their breakdown products must be distributed to the different organs of the growing seedling. Here, we investigated the mobilization of soybean (Glycine max) seed reserves during seedling growth by initially constructing a genome-scale stoichiometric model for this important crop plant and then adapting the model to reflect metabolism in the cotyledons and hypocotyl/root axis (HRA). A detailed analysis of seedling growth and alterations in biomass composition was performed over 4 d of postgerminative growth and used to constrain the stoichiometric model. Flux balance analysis revealed marked differences in metabolism between the two organs, together with shifts in primary metabolism occurring during different periods postgermination. In particular, from 48 h onward, cotyledons were characterized by the oxidation of fatty acids to supply carbon for the tricarboxylic acid cycle as well as production of sucrose and glutamate for export to the HRA, while the HRA was characterized by the use of a range of imported amino acids in protein synthesis and catabolic processes. Overall, the use of flux balance modeling provided new insight into well-characterized metabolic processes in an important crop plant due to their analysis within the context of a metabolic network and reinforces the relevance of the application of this technique to the analysis of complex plant metabolic systems.


Assuntos
Glycine max/metabolismo , Plântula/metabolismo , Carbono/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Glutâmico/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Plântula/genética , Glycine max/genética , Sacarose/metabolismo
3.
Plant Mol Biol ; 94(6): 577-594, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28409321

RESUMO

Drought is the main abiotic stress constraining sugarcane production. However, our limited understanding of the molecular mechanisms involved in the drought stress responses of sugarcane impairs the development of new technologies to increase sugarcane drought tolerance. Here, an integrated approach was performed to reveal the molecular and physiological changes in two closely related sugarcane cultivars, including the most extensively planted cultivar in Brazil (cv. RB867515), in response to moderate (-0.5 MPa) and severe (-1 MPa) drought stress at the transcriptional, translational, and posttranslational levels. The results show common and cultivar exclusive changes in specific genes related to photosynthesis, carbohydrate, amino acid, and phytohormone metabolism. The novel phosphoproteomics and redox proteomic analysis revealed the importance of posttranslational regulation mechanisms during sugarcane drought stress. The shift to soluble sugar, secondary metabolite production, and activation of ROS eliminating processes in response to drought tolerance were mechanisms exclusive to cv. RB867515, helping to explain the better performance and higher production of this cultivar under these stress conditions.


Assuntos
Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/fisiologia , Aminoácidos/genética , Aminoácidos/metabolismo , Brasil , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica/métodos , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Estresse Fisiológico
4.
PLoS One ; 10(8): e0134964, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252208

RESUMO

Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G) ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait.


Assuntos
Biotecnologia/métodos , Celulose/metabolismo , Etanol/metabolismo , Hibridização Genética , Saccharum/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Esterificação , Fermentação , Genótipo , Hidrólise , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Caules de Planta/crescimento & desenvolvimento , Saccharum/anatomia & histologia , Saccharum/crescimento & desenvolvimento , Ácidos Urônicos/metabolismo , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA