Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 290(10): 2658-2672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36660811

RESUMO

Fungal copper radical oxidases (CROs) from the Auxiliary Activity family 5 (AA5) constitute a group of metalloenzymes that oxidize a wide panel of natural compounds, such as galactose-containing saccharides or primary alcohols, into product derivatives exhibiting promising biotechnological interests. Despite a well-conserved first copper-coordination sphere and overall fold, some members of the AA5_2 subfamily are incapable of oxidizing galactose and galactosides but conversely efficiently catalyse the oxidation of diverse aliphatic alcohols. The objective of this study was to understand which residues dictate the substrate preferences between alcohol oxidases and galactose oxidases within the AA5_2 subfamily. Based on structural differences and molecular modelling predictions between the alcohol oxidase from Colletotrichum graminicola (CgrAlcOx) and the archetypal galactose oxidase from Fusarium graminearum (FgrGalOx), a rational mutagenesis approach was developed to target regions or residues potentially driving the substrate specificity of these enzymes. A set of 21 single and multiple CgrAlcOx variants was produced and characterized leading to the identification of six residues (W39, F138, M173, F174, T246, L302), in the vicinity of the active site, crucial for substrate recognition. Two multiple CgrAlcOx variants, i.e. M4F (W39F, F138W, M173R and T246Q) and M6 (W39F, F138W, M173R, F174Y, T246Q and L302P), exhibited a similar affinity for carbohydrate substrates when compared to FgrGalOx. In conclusion, using a rational site-directed mutagenesis approach, we identified key residues involved in the substrate selectivity of AA5_2 enzymes towards galactose-containing saccharides.


Assuntos
Cobre , Galactose , Cobre/metabolismo , Galactose/química , Oxirredutases/metabolismo , Galactose Oxidase/genética , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Oxirredução , Ceruloplasmina , Álcoois , Especificidade por Substrato
2.
Sci Adv ; 8(51): eade9982, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542709

RESUMO

Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity. Using Colletotrichum orbiculare, we show that the enzyme pair is cosecreted by the fungus early during plant penetration and that single and double mutants have impaired penetration ability. Molecular modeling, biochemical, and biophysical approaches revealed a fine-tuned interplay between these metalloenzymes, which oxidize plant cuticular long-chain alcohols into aldehydes. We show that the enzyme pair is involved in transcriptional regulation of genes necessary for host penetration. The identification of these infection-specific metalloenzymes opens new avenues on the role of wax-derived compounds and the design of oxidase-specific inhibitors for crop protection.


Assuntos
Proteínas Fúngicas , Metaloproteínas , Proteínas Fúngicas/genética , Células Vegetais , Fungos , Virulência
3.
Analyst ; 147(11): 2515-2522, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35543191

RESUMO

1D 1H NMR spectroscopy has been widely used to monitor enzymatic activity by recording the evolution of the spectra of substrates and/or products, thanks to the linear response of NMR. For complex systems involving the coexistence of multiple compounds (substrate, final product and various intermediates), the identification and quantification can be a more arduous task. Here, we present a simple analytical method for the rapid characterization of reaction mixtures involving enzymatic complexes using Maximum Quantum (MaxQ) NMR, accelerated with the Non-Uniform Sampling (NUS) acquisition procedure. Specifically, this approach enables, in the first analytical step, the counting of the molecules present in the samples. We also show, using two different enzymatic systems, that the implementation of these pulse sequences implies precautions related to the short relaxation times due to the presence of metallo-enzymes or paramagnetic catalysts. Finally, the combination of MaxQ and diffusion experiments, which leads to a 3D chart, greatly improves the resolution and offers an extreme simplification of the spectra while giving valuable indications on the affinity of the enzymes to the different compounds present in the reaction mixture.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
4.
ACS Catal ; 12(2): 1111-1116, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35096467

RESUMO

Biocatalytic pathways for the synthesis of (-)-menthol, the most sold flavor worldwide, are highly sought-after. To access the key intermediate (R)-citronellal used in current major industrial production routes, we established a one-pot bienzymatic cascade from inexpensive geraniol, overcoming the problematic biocatalytic reduction of the mixture of (E/Z)-isomers in citral by harnessing a copper radical oxidase (CgrAlcOx) and an old yellow enzyme (OYE). The cascade using OYE2 delivered 95.1% conversion to (R)-citronellal with 95.9% ee, a 62 mg scale-up affording high yield and similar optical purity. An alternative OYE, GluER, gave (S)-citronellal from geraniol with 95.3% conversion and 99.2% ee.

5.
Biotechnol Adv ; 56: 107787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34147589

RESUMO

From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.


Assuntos
Perfumes , Álcoois , Aldeídos , Álcoois Graxos , Odorantes , Oxirredução , Oxirredutases
6.
Cell Mol Life Sci ; 78(24): 8187-8208, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34738149

RESUMO

There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.


Assuntos
Cobre/metabolismo , Radicais Livres/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Metaloproteínas/metabolismo , Oxirredutases/metabolismo , Filogenia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Cobre/química , Radicais Livres/química , Proteínas Fúngicas/química , Metaloproteínas/química , Oxirredução , Oxirredutases/química , Conformação Proteica , Especificidade por Substrato
7.
Appl Environ Microbiol ; 87(24): e0152621, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613753

RESUMO

Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.


Assuntos
Colletotrichum , Cobre , Ácidos Graxos/biossíntese , Oxirredutases/metabolismo , Álcoois , Aldeídos , Colletotrichum/enzimologia , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxirredutases/genética , Secretoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA