Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Eur J Neurosci ; 59(7): 1604-1620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359910

RESUMO

Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.


Assuntos
Discinesias , Doença de Parkinson , Ratos , Animais , Levodopa/efeitos adversos , Nitroprussiato/farmacologia , Oxidopamina/toxicidade , Neurônios Espinhosos Médios , Óxido Nítrico/metabolismo , Discinesias/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Antiparkinsonianos/efeitos adversos
3.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36015095

RESUMO

The facilitation of corticostriatal transmission is modulated by the pharmacological inhibition of striatal phosphodiesterase 10A (PDE10A). Since L-DOPA-induced dyskinesia is associated with abnormal corticostriatal transmission, we hypothesized that inhibition of PDE10A would modulate L-DOPA-induced dyskinesia (LID) by regulating corticostriatal activity. 6-OHDA-lesioned rats were chronically treated with L-DOPA for one week. After that, for two additional weeks, animals were treated with the PDE10A inhibitor PDM-042 (1 and 3 mg/kg) one hour before L-DOPA. Behavioral analyses were performed to quantify abnormal involuntary movements (AIMs) and to assess the antiparkinsonian effects of L-DOPA. Single-unit extracellular electrophysiological recordings were performed in vivo to characterize the responsiveness of MSNs to cortical stimulation. The low dose of PDM-042 had an antidyskinetic effect (i.e., attenuated peak-dose dyskinesia) and did not interfere with cortically evoked spike activity. Conversely, the high dose of PDM-042 did not affect peak-dose dyskinesia, prolonged AIMs, and increased cortically evoked spike activity. These data suggest that the facilitation of corticostriatal transmission is likely to contribute to the expression of AIMs. Therefore, cyclic nucleotide manipulation is an essential target in controlling LID.

4.
J Vis Exp ; (176)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34779439

RESUMO

Motor symptoms of Parkinson's disease (PD)-bradykinesia, akinesia, and tremor at rest-are consequences of the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and dopaminergic striatal deficit. Animal models have been widely used to simulate human pathology in the laboratory. Rodents are the most used animal models for PD due to their ease of handling and maintenance. Moreover, the anatomy and molecular, cellular, and pharmacological mechanisms of PD are similar in rodents and humans. The infusion of the neurotoxin, 6-hydroxydopamine (6-OHDA), into a medial forebrain bundle (MFB) of rats reproduces the severe destruction of dopaminergic neurons and simulates PD symptoms. This protocol demonstrates how to perform the unilateral microinjection of 6-OHDA in the MFB in a rat model of PD and shows the motor deficits induced by 6-OHDA and predicted dopaminergic lesions through the stepping test. The 6-OHDA causes significant impairment in the number of steps performed with the contralateral forelimb.


Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos/patologia , Feixe Prosencefálico Mediano , Oxidopamina , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Ratos , Substância Negra/patologia
5.
J Vis Exp ; (176)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34661577

RESUMO

L-DOPA-induced dyskinesias (LIDs) refer to motor complications that arise from prolonged L-DOPA administration to patients with Parkinson's disease (PD). The most common pattern observed in the clinic is the peak-dose dyskinesia which consists of clinical manifestations of choreiform, dystonic, and ballistic movements. The 6-hydroxydopamine (6-OHDA) rat model of PD mimics several characteristics of LIDs. After repeated L-DOPA administration, 6-OHDA-lesioned rats exhibit dyskinetic-like movements (e.g., abnormal involuntary movements, AIMs). This protocol demonstrates how to induce and analyze AIMs in 6-OHDA-lesioned rats with 90%-95% dopaminergic depletion in the nigrostriatal pathway. Repeated administration (3 weeks) of L-DOPA (5 mg/kg, combined with 12.5 mg/kg of benserazide) can induce the development of AIMs. The time course analysis reveals a significant increase in AIMs at 30-90 min (peak-dose dyskinesia). Rodent models of LIDs are an important preclinical tool to identify effective antidyskinetic interventions.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Dopamina , Discinesia Induzida por Medicamentos/etiologia , Levodopa/efeitos adversos , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA