Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Malar J ; 23(1): 285, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300444

RESUMO

BACKGROUND: Severe malaria can cause respiratory symptoms, which may lead to malaria-acute lung injury (MA-ALI) due to inflammation and damage to the blood-gas barrier. Patients with severe malaria also often present thrombocytopenia, and the use of acetylsalicylic acid (ASA), a commonly used non-steroidal anti-inflammatory drug with immunomodulatory and antiplatelet effects, may pose a risk in regions where malaria is endemic. Thus, this study aimed to investigate the systemic impact of ASA and dihydroartemisinin (DHA) on ALI induced in mice by Plasmodium berghei NK65 (PbNK65). METHODS: C57BL/6 mice were randomly divided into control (C) and PbNK65 infected groups and were inoculated with uninfected or 104 infected erythrocytes, respectively. Then, the animals were treated with DHA (3 mg/kg) or vehicle (DMSO) at the 8-day post-infection (dpi) for 7 days and with ASA (100 mg/kg, single dose), and analyses were performed at 9 or 15 dpi. Lung mechanics were performed, and lungs were collected for oedema evaluation and histological analyses. RESULTS: PbNK65 infection led to lung oedema, as well as increased lung static elastance (Est, L), resistive (ΔP1, L) and viscoelastic (ΔP2, L) pressures, percentage of mononuclear cells, inflammatory infiltrate, hemorrhage, alveolar oedema, and alveolar thickening septum at 9 dpi. Mice that received DHA or DHA + ASA had an increase in Est, L, and CD36 expression on inflammatory monocytes and higher protein content on bronchoalveolar fluid (BALF). However, only the DHA-treated group presented a percentage of inflammatory monocytes similar to the control group and a decrease in ΔP1, L and ΔP2, L compared to Pb + DMSO. Also, combined treatment with DHA + ASA led to an impairment in diffuse alveolar damage score and lung function at 9 dpi. CONCLUSIONS: Therapy with ASA maintained lung morpho-functional impairment triggered by PbNK65 infection, leading to a large influx of inflammatory monocytes to the lung tissue. Based on its deleterious effects in experimental MA-ALI, ASA administration or its treatment maintenance might be carefully reconsidered and further investigated in human malaria cases.


Assuntos
Lesão Pulmonar Aguda , Antimaláricos , Artemisininas , Aspirina , Pulmão , Malária , Camundongos Endogâmicos C57BL , Plasmodium berghei , Animais , Artemisininas/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/parasitologia , Aspirina/farmacologia , Aspirina/administração & dosagem , Malária/tratamento farmacológico , Malária/complicações , Camundongos , Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Quimioterapia Combinada , Modelos Animais de Doenças , Masculino , Testes de Função Respiratória
2.
Int J Biol Sci ; 19(11): 3383-3394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496995

RESUMO

The immune and nervous systems can be thought of as cognitive and plastic systems, since they are both involved in cognition/recognition processes and can be architecturally and functionally modified by experience, and such changes can influence each other's functioning. The immune system can affect nervous system function depending on the nature of the immune stimuli and the pro/anti-inflammatory responses they generate. Here we consider interactions between the immune and nervous systems in homeostasis and disease, including the beneficial and deleterious effects of immune stimuli on brain function and the impact of severe and non-severe malaria parasite infections on neurocognitive and behavioral parameters in human and experimental murine malaria. We also discuss the effect of immunization on the reversal of cognitive deficits associated with experimental non-severe malaria in a model susceptible to the development of the cerebral form of the illness. Finally, we consider the possibility of using human vaccines, largely exploited as immune-prophylactics for infectious diseases, as therapeutic tools to prevent or mitigate the expression of cognitive deficits in infectious and chronic degenerative diseases.


Assuntos
Transtornos Cognitivos , Malária , Humanos , Animais , Camundongos , Malária/parasitologia , Encéfalo , Transtornos Cognitivos/parasitologia , Cognição , Homeostase
3.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511092

RESUMO

Newly emerging data suggest that several neutrophil defense mechanisms may play a role in both aggravating and protecting against malaria. These exciting findings suggest that the balance of these cells in the host body may have an impact on the pathogenesis of malaria. To fully understand the role of neutrophils in severe forms of malaria, such as cerebral malaria (CM), it is critical to gain a comprehensive understanding of their behavior and functions. This study investigated the dynamics of neutrophil and T cell responses in C57BL/6 and BALB/c mice infected with Plasmodium berghei ANKA, murine models of experimental cerebral malaria (ECM) and non-cerebral experimental malaria, respectively. The results demonstrated an increase in neutrophil percentage and neutrophil-T cell ratios in the spleen and blood before the development of clinical signs of ECM, which is a phenomenon not observed in the non-susceptible model of cerebral malaria. Furthermore, despite the development of distinct forms of malaria in the two strains of infected animals, parasitemia levels showed equivalent increases throughout the infection period evaluated. These findings suggest that the neutrophil percentage and neutrophil-T cell ratios may be valuable predictive tools for assessing the dynamics and composition of immune responses involved in the determinism of ECM development, thus contributing to the advancing of our understanding of its pathogenesis.


Assuntos
Malária Cerebral , Animais , Camundongos , Neutrófilos/patologia , Camundongos Endogâmicos C57BL , Plasmodium berghei , Linfócitos T CD8-Positivos , Modelos Animais de Doenças
4.
Mem Inst Oswaldo Cruz ; 118: e230023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162063

RESUMO

Innate immunity refers to the mechanisms responsible for the first line of defense against pathogens, cancer cells and toxins. The innate immune system is also responsible for the initial activation of the body's specific immune response (adaptive immunity). Innate immunity was studied and further developed in parallel with adaptive immunity beginning in the first half of the 19th century and has been gaining increasing importance to our understanding of health and disease. In the present overview, we describe the main findings and ideas that contributed to the development of innate immunity as a continually expanding branch of modern immunology. We start with the toxicological studies by Von Haller and Magendie, in the late 18th and early 19th centuries, and continue with the discoveries in invertebrate immunity that supported the discovery and characterization of lipopolysaccharide (LPS) and pattern recognition receptors that led to the development of the pattern recognition and danger theory.


Assuntos
Imunidade Inata
5.
Front Immunol ; 14: 1122411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895563

RESUMO

Malaria and leishmaniasis are endemic parasitic diseases in tropical and subtropical countries. Although the overlap of these diseases in the same host is frequently described, co-infection remains a neglected issue in the medical and scientific community. The complex relationship of concomitant infections with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and experimental co-infections, showing how this "dual" infection can exacerbate or suppress an effective immune response to these protozoa. Thus, a Plasmodium infection preceding or following Leishmania infection can impact the clinical course, accurate diagnosis, and management of leishmaniasis, and vice versa. The concept that in nature we are affected by concomitant infections reinforces the need to address the theme and ensure its due importance. In this review we explore and describe the studies available in the literature on Plasmodium spp. and Leishmania spp. co-infection, the scenarios, and the factors that may influence the course of these diseases.


Assuntos
Coinfecção , Leishmania , Leishmaniose , Malária , Plasmodium , Humanos , Coinfecção/complicações , Leishmaniose/complicações , Leishmaniose/diagnóstico , Leishmaniose/tratamento farmacológico , Malária/complicações , Malária/epidemiologia
6.
Brain Behav Immun ; 109: 102-104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657622

RESUMO

Malaria, an ancient infectious parasitic disease, is caused by protozoa of the genus Plasmodium, whose erythrocytic cycle is accompanied by fever, headache, sweating and chills and a systemic inflammation that can progress to severe forms of disease, including cerebral malaria. Approximately 25% of survivors of this syndrome develop sequelae that may include neurological, neurocognitive, behavioral alterations and poor school performance. Furthermore, some outcomes have also been recorded following episodes of non-severe malaria, which correspond to the most common clinical form of the disease worldwide. There is a body of evidence that neuroinflammation, due to systemic inflammation, plays an important role in the neuropathogenesis of malaria culminating in these cognitive dysfunctions. Preclinical studies suggest that vaccination with type 2 immune response elicitors, such as the tetanus-diphtheria (Td) vaccine, may exert a beneficial immunomodulatory effect by alleviating neuroinflammation. In this viewpoint article, vaccination is proposed as a therapy approach to revert or mitigate neurocognitive deficits associated with malaria.


Assuntos
Malária Cerebral , Doenças Neuroinflamatórias , Humanos , Malária Cerebral/complicações , Vacina contra Difteria e Tétano , Vacinação , Inflamação , Imunidade
7.
Mem. Inst. Oswaldo Cruz ; 118: e230023, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440669

RESUMO

Innate immunity refers to the mechanisms responsible for the first line of defense against pathogens, cancer cells and toxins. The innate immune system is also responsible for the initial activation of the body's specific immune response (adaptive immunity). Innate immunity was studied and further developed in parallel with adaptive immunity beginning in the first half of the 19th century and has been gaining increasing importance to our understanding of health and disease. In the present overview, we describe the main findings and ideas that contributed to the development of innate immunity as a continually expanding branch of modern immunology. We start with the toxicological studies by Von Haller and Magendie, in the late 18th and early 19th centuries, and continue with the discoveries in invertebrate immunity that supported the discovery and characterization of lipopolysaccharide (LPS) and pattern recognition receptors that led to the development of the pattern recognition and danger theory.

8.
Front Immunol ; 13: 1021211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505414

RESUMO

Data recently reported by our group indicate that stimulation with a pool of immunogens capable of eliciting type 2 immune responses can restore the cognitive and behavioral dysfunctions recorded after a single episode of non-severe rodent malaria caused by Plasmodium berghei ANKA. Here we explored the hypothesis that isolated immunization with one of the type 2 immune response-inducing immunogens, the human diphtheria-tetanus (dT) vaccine, may revert damages associated with malaria. To investigate this possibility, we studied the dynamics of cognitive deficits and anxiety-like phenotype following non-severe experimental malaria and evaluated the effects of immunization with both dT and of a pool of type 2 immune stimuli in reversing these impairments. Locomotor activity and long-term memory deficits were assessed through the open field test (OFT) and novel object recognition task (NORT), while the anxiety-like phenotype was assessed by OFT and light/dark task (LDT). Our results indicate that poor performance in cognitive-behavioral tests can be detected as early as the 12th day after the end of antimalarial treatment with chloroquine and may persist for up to 155 days post infection. The single immunization strategy with the human dT vaccine showed promise in reversal of long-term memory deficits in NORT, and anxiety-like behavior in OFT and LDT.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Imunomodulação , Vacina contra Difteria e Tétano , Imunidade , Cognição
9.
Front Cell Infect Microbiol ; 12: 829413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281436

RESUMO

Typical of tropical and subtropical regions, malaria is caused by protozoa of the genus Plasmodium and is, still today, despite all efforts and advances in controlling the disease, a major issue of public health. Its clinical course can present either as the classic episodes of fever, sweating, chills and headache or as nonspecific symptoms of acute febrile syndromes and may evolve to severe forms. Survivors of cerebral malaria, the most severe and lethal complication of the disease, might develop neurological, cognitive and behavioral sequelae. This overview discusses the neurocognitive deficits and behavioral alterations resulting from human naturally acquired infections and murine experimental models of malaria. We highlighted recent reports of cognitive and behavioral sequelae of non-severe malaria, the most prevalent clinical form of the disease worldwide. These sequelae have gained more attention in recent years and therapies for them are required and demand advances in the understanding of neuropathogenesis. Recent studies using experimental murine models point to immunomodulation as a potential approach to prevent or revert neurocognitive sequelae of malaria.


Assuntos
Malária Cerebral , Plasmodium , Animais , Progressão da Doença , Humanos , Imunomodulação , Malária Cerebral/complicações , Camundongos
10.
Sci Rep ; 11(1): 14857, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290279

RESUMO

The immune system plays a role in the maintenance of healthy neurocognitive function. Different patterns of immune response triggered by distinct stimuli may affect nervous functions through regulatory or deregulatory signals, depending on the properties of the exogenous immunogens. Here, we investigate the effect of immune stimulation on cognitive-behavioural parameters in healthy mice and its impact on cognitive sequelae resulting from non-severe experimental malaria. We show that immune modulation induced by a specific combination of immune stimuli that induce a type 2 immune response can enhance long-term recognition memory in healthy adult mice subjected to novel object recognition task (NORT) and reverse a lack of recognition ability in NORT and anxiety-like behaviour in a light/dark task that result from a single episode of mild Plasmodium berghei ANKA malaria. Our findings suggest a potential use of immunogens for boosting and recovering recognition memory that may be impaired by chronic and infectious diseases and by the effects of ageing.


Assuntos
Disfunção Cognitiva/imunologia , Disfunção Cognitiva/terapia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Imunização , Malária/complicações , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Ansiedade , Disfunção Cognitiva/etiologia , Feminino , Camundongos Endogâmicos C57BL , Plasmodium berghei
11.
Sci Rep ; 11(1): 12077, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103601

RESUMO

Pathological features observed in both human and experimental cerebral malaria (ECM) are endothelial dysfunction and changes in blood components. Blood transfusion has been routinely used in patients with severe malarial anemia and can also benefit comatose and acidotic malaria patients. In the present study Plasmodium berghei-infected mice were transfused intraperitoneally with 200 µL of whole blood along with 20 mg/kg of artemether. ECM mice showed severe thrombocytopenia and decreases in hematocrit. Artemether treatment markedly aggravated anemia within 24 h. Whole blood administration significantly prevented further drop in hematocrit and partially restored the platelet count. Increased levels of plasma angiopoietin-2 (Ang-2) remained high 24 h after artemether treatment but returned to normal levels 24 h after blood transfusion, indicating reversal to quiescence. Ang-1 was depleted in ECM mice and levels were not restored by any treatment. Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations. Critically, blood transfusion resulted in markedly improved survival of mice with ECM (75.9% compared to 50.9% receiving artemether only). These findings indicate that whole blood transfusion can be an effective adjuvant therapy for cerebral malaria.


Assuntos
Artemeter/farmacologia , Transfusão de Sangue , Malária Cerebral , Plasmodium berghei/metabolismo , Animais , Feminino , Malária Cerebral/sangue , Malária Cerebral/fisiopatologia , Malária Cerebral/terapia , Camundongos
12.
Artigo em Inglês | MEDLINE | ID: mdl-31355153

RESUMO

Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Desnutrição/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Transporte Biológico , Movimento Celular , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Exossomos/imunologia , Exossomos/metabolismo , Exossomos/parasitologia , Líquido Extracelular/imunologia , Líquido Extracelular/metabolismo , Líquido Extracelular/parasitologia , Galectina 1/genética , Galectina 1/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Visceral/genética , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Metabolismo dos Lipídeos , Masculino , Desnutrição/genética , Desnutrição/metabolismo , Desnutrição/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Plasminogênio/genética , Plasminogênio/imunologia , Proteoma/genética , Proteoma/imunologia , Linfócitos T/parasitologia , Timo/metabolismo , Timo/parasitologia
13.
Parasit Vectors ; 11(1): 191, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554958

RESUMO

BACKGROUND: Cerebral malaria, the main complication of Plasmodium falciparum infection in humans, is associated with persistent neurocognitive sequels both in human disease and the murine experimental model. In recent years, cognitive deficits related to uncomplicated (non-cerebral) malaria have also been reported in chronically exposed residents of endemic areas, but not in some murine experimental models of non-cerebral malaria. This study aimed at evaluating the influence of uncomplicated malaria on different behavioural paradigms associated with memory and anxiety-like parameters in a murine model that has the ability to develop cerebral malaria. METHODS: Plasmodium berghei ANKA-infected and non-infected C57BL/6 mice were used. Development of cerebral malaria was prevented by chloroquine treatment starting on the fourth day of infection. The control group (non-infected mice) were treated with PBS. The effect of uncomplicated malaria infection on locomotor habituation, short and long-term memory and anxious-like behaviour was evaluated 64 days after parasite clearance in assays including open field, object recognition, Y-maze and light/dark tasks. RESULTS: Plasmodium berghei ANKA-infected mice showed significant long-lasting disturbances reflected by a long-term memory-related behaviour on open field and object recognition tasks, accompanied by an anxious-like phenotype availed on open field and light-dark tasks. CONCLUSIONS: Long-term neurocognitive sequels may follow an uncomplicated malaria episode in an experimental model prone to develop cerebral malaria, even if the infection is treated before the appearance of clinical signs of cerebral impairment.


Assuntos
Ansiedade , Malária/complicações , Memória , Tempo , Animais , Antimaláricos/uso terapêutico , Encéfalo/parasitologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/parasitologia , Modelos Animais de Doenças , Malária/parasitologia , Malária Cerebral , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/tratamento farmacológico , Plasmodium berghei/isolamento & purificação
14.
Front Immunol ; 8: 1560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204144

RESUMO

As key cells, able to host and kill Leishmania parasites, inflammatory monocytes/macrophages are potential vaccine and therapeutic targets to improve immune responses in Leishmaniasis. Macrophage phenotypes range from M1, which express NO-mediated microbial killing, to M2 macrophages that might help infection. Resistance to Leishmaniasis depends on Leishmania species, mouse strain, and both innate and adaptive immunity. C57BL/6 (B6) mice are resistant and control infection, whereas Leishmania parasites thrive in BALB/c mice, which are susceptible to develop cutaneous lesions in the course of infection with Leishmania major, but not upon infection with Leishmania braziliensis. Here, we investigated whether a deficit in early maturation of inflammatory monocytes into macrophages in BALB/c mice underlies increased susceptibility to L. major versus L. braziliensis parasites. We show that, after infection with L. braziliensis, monocytes are recruited to peritoneum, differentiate into macrophages, and develop an M1 phenotype able to produce proinflammatory cytokines in both B6 and BALB/c mice. Nonetheless, more mature macrophages from B6 mice expressed inducible NO synthase (iNOS) and higher NO production in response to L. braziliensis parasites, whereas BALB/c mice developed macrophages expressing an incomplete M1 phenotype. By contrast, monocytes recruited upon L. major infection gave rise to immature macrophages that failed to induce an M1 response in BALB/c mice. Overall, these results are consistent with the idea that resistance to Leishmania infection correlates with improved maturation of macrophages in a mouse-strain and Leishmania-species dependent manner. All-trans retinoic acid (ATRA) has been proposed as a therapy to differentiate immature myeloid cells into macrophages and help immunity to tumors. To prompt monocyte to macrophage maturation upon L. major infection, we treated B6 and BALB/c mice with ATRA. Unexpectedly, treatment with ATRA reduced proinflammatory cytokines, iNOS expression, and parasite killing by macrophages. Moreover, ATRA promoted an M1 to M2 transition in bone marrow-derived macrophages from both strains. Therefore, ATRA uncouples macrophage maturation and development of M1 phenotype and downmodulates macrophage-mediated immunity to L. major parasites. Cautions should be taken for the therapeutic use of ATRA, by considering direct effects on innate immunity to intracellular pathogens.

15.
PLoS Pathog ; 13(6): e1006479, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28666021

RESUMO

Inflammatory monocytes can be manipulated by environmental cues to perform multiple functions. To define the role of monocytes during primary or secondary infection with an intra-phagosomal pathogen we employed Leishmania major-red fluorescent protein (RFP) parasites and multi-color flow cytometry to define and enumerate infected and uninfected inflammatory cells in the skin. During primary infection, infected monocytes had altered maturation and were the initial mononuclear host cell for parasite replication. In contrast, at a distal site of secondary infection in mice with a healed but persistent primary infection, this same population rapidly produced inducible nitric oxide synthase (iNOS) in an IFN-γ dependent manner and was critical for parasite killing. Maturation to a dendritic cell-like phenotype was not required for monocyte iNOS-production, and enhanced monocyte recruitment correlated with IFN-γ dependent cxcl10 expression. In contrast, neutrophils appeared to be a safe haven for parasites in both primary and secondary sites. Thus, inflammatory monocytes play divergent roles during primary versus secondary infection with an intra-phagosomal pathogen.


Assuntos
Coinfecção/microbiologia , Leishmania major , Leishmaniose Cutânea/imunologia , Monócitos/microbiologia , Fagossomos/metabolismo , Pele/microbiologia , Animais , Antígenos Ly/imunologia , Coinfecção/imunologia , Células Dendríticas/metabolismo , Feminino , Inflamação/microbiologia , Leishmaniose Cutânea/parasitologia , Camundongos Transgênicos , Monócitos/metabolismo , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagossomos/imunologia , Receptores CCR2/imunologia , Receptores de Interleucina-8A/imunologia
16.
Eur J Immunol ; 46(4): 897-911, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689285

RESUMO

Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1ß mRNA and IL-1ß-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1ß or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1ß might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1ß by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1ß, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.


Assuntos
Proteínas de Transporte/genética , Interleucina-1beta/genética , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Animais , Caspase 1/genética , Caspases/genética , Caspases Iniciadoras , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/biossíntese , Receptores de Citocinas/genética , Receptores de Interleucina , Receptores Tipo I de Interleucina-1/genética , Células Th1/imunologia
17.
J Immunol ; 194(1): 93-100, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404363

RESUMO

Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, although the clinically related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in a helminth-infected population, we performed ImmunoCAP tests in filarial-infected and noninfected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins as well as IgE against representative recombinant allergens with and without helminth homologs. The impact of helminth infection on the levels and function of the IgE to these specific homologous and nonhomologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of ImmunoCAP-identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologs in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologs in helminths. Mice infected with the helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologs in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications, altering serologic approaches to allergen testing and bringing a new perspective to the "hygiene hypothesis."


Assuntos
Alérgenos/imunologia , Reações Cruzadas/imunologia , Filariose/imunologia , Proteínas de Helminto/imunologia , Imunoglobulina E/imunologia , Adulto , Animais , Baratas/imunologia , Feminino , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/sangue , Loa/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nematospiroides dubius/imunologia , Nematospiroides dubius/patogenicidade , Onchocerca volvulus/imunologia , Phleum/imunologia , Pyroglyphidae/imunologia , Testes Cutâneos , Wuchereria bancrofti/imunologia
18.
Proc Natl Acad Sci U S A ; 111(47): 16808-13, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385616

RESUMO

Genetic exchange between Leishmania major strains during their development in the sand fly vector has been experimentally shown. To investigate the possibility of genetic exchange between different Leishmania species, a cutaneous strain of L. major and a visceral strain of Leishmania infantum, each bearing a different drug-resistant marker, were used to coinfect Lutzomyia longipalpis sand flies. Eleven double-drug-resistant progeny clones, each the product of an independent mating event, were generated and submitted to genotype and phenotype analyses. The analysis of multiple allelic markers across the genome suggested that each progeny clone inherited at least one full set of chromosomes from each parent, with loss of heterozygosity at some loci, and uniparental retention of maxicircle kinetoplast DNA. Hybrids with DNA contents of approximately 2n, 3n, and 4n were observed. In vivo studies revealed clear differences in the ability of the hybrids to produce pathology in the skin or to disseminate to and grow in the viscera, suggesting polymorphisms and differential inheritance of the gene(s) controlling these traits. The studies, to our knowledge, represent the first experimental confirmation of cross-species mating in Leishmania, opening the way toward genetic linkage analysis of important traits and providing strong evidence that genetic exchange is responsible for the generation of the mixed-species genotypes observed in natural populations.


Assuntos
Insetos Vetores/genética , Leishmania/genética , Psychodidae/parasitologia , Animais , Leishmania/classificação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
19.
Infect Immun ; 82(7): 2713-27, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733090

RESUMO

The route of pathogen inoculation by needle has been shown to influence the outcome of infection. Employing needle inoculation of the obligately intracellular parasite Leishmania major, which is transmitted in nature following intradermal (i.d.) deposition of parasites by the bite of an infected sand fly, we identified differences in the preexisting and acute cellular responses in mice following i.d. inoculation of the ear, subcutaneous (s.c.) inoculation of the footpad, or inoculation of the peritoneal cavity (intraperitoneal [i.p.] inoculation). Initiation of infection at different sites was associated with different phagocytic populations. Neutrophils were the dominant infected cells following i.d., but not s.c. or i.p., inoculation. Inoculation of the ear dermis resulted in higher frequencies of total and infected neutrophils than inoculation of the footpad, and these higher frequencies were associated with a 10-fold increase in early parasite loads. Following inoculation of the ear in the absence of neutrophils, parasite phagocytosis by other cell types did not increase, and fewer parasites were able to establish infection. The frequency of infected neutrophils within the total infected CD11b(+) population was higher than the frequency of total neutrophils within the total CD11b(+) population, demonstrating that neutrophils are overrepresented as a proportion of infected cells. Employing i.d. inoculation to model sand fly transmission of parasites has significant consequences for infection outcome relative to that of s.c. or i.p. inoculation, including the phenotype of infected cells and the number of parasites that establish infection. Vector-borne infections initiated in the dermis likely involve adaptations to this unique microenvironment. Bypassing or altering this initial step has significant consequences for infection.


Assuntos
Leishmania major/fisiologia , Animais , Antígenos CD/metabolismo , Mordeduras e Picadas , Orelha , Feminino , , Regulação da Expressão Gênica/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/parasitologia , Psychodidae
20.
PLoS One ; 9(1): e85715, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416445

RESUMO

We investigated early cellular responses induced by infection with Leishmania major in macrophages from resistant C57/BL6 mice. Infection increased production of reactive oxygen species by resident, but not inflammatory peritoneal macrophages. In addition, infection increased activation of stress-activated protein kinases/c-Jun N-terminal kinases (SAPK/JNK) in resident, but not in inflammatory peritoneal macrophages. Infection also increased expression of membrane and soluble FasL, but infected macrophages remained viable after 48 h. Infection increased secretion of cytokines/chemokines TNF-α, IL-6, TIMP-1, IL-1RA, G-CSF, TREM, KC, MIP-1α, MIP-1ß, MCP-1, and MIP-2 in resident macrophages. Addition of antioxidants deferoxamine and N-acetylcysteine reduced ROS generation and JNK activation. Addition of antioxidants or JNK inhibitor SP600125 reduced secretion of KC. Furthermore, treatment with antioxidants or JNK inhibitor also reduced intracellular parasite replication. These results indicated that infection triggers a rapid cellular stress response in resident macrophages which induces proinflammatory signals, but is also involved in parasite survival and replication in host macrophages.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/parasitologia , Macrófagos/patologia , Macrófagos/parasitologia , Estresse Fisiológico , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Proteína Ligante Fas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leishmania major/efeitos dos fármacos , Leishmania major/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Parasitos/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA