Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Mol Genet Metab ; 142(3): 108511, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878498

RESUMO

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.


Assuntos
Íntrons , RNA Mensageiro , Humanos , Masculino , Íntrons/genética , RNA Mensageiro/genética , ATPases Vacuolares Próton-Translocadoras/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Mutação , Sequenciamento Completo do Genoma , Sequenciamento do Exoma , Análise de Sequência de RNA , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Criança , Splicing de RNA/genética , Pré-Escolar
2.
Stem Cell Res ; 79: 103481, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38924972

RESUMO

GCDH encodes for the enzyme catalyzing the sixth step of the lysine degradation pathway. Autosomal recessive variants in GCDH are associated with glutaric aciduria type I (GA1), of which a wide genotypic spectrum of pathogenic variants have been described. In this study, hiPSC lines derived from four GA1 patients with different genotypes were generated and fully characterized. Two patients carry compound heterozygous variants in GCDH, while the other two patients carry a variant in homozygosis. These hiPSC lines can significantly contribute to better understand the molecular mechanism underlying GA1 and provide excellent models for the development of new therapeutic strategies.

3.
J Clin Med ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068509

RESUMO

Phenylketonuria (PKU) is the most frequent of the congenital errors of amino acid (AA) metabolism worldwide. It leads to the accumulation of the essential AA phenylalanine (Phe) and it is associated with severe neurological defects. The early diagnosis and treatment of this rare disease, achieved through newborn screening and low-Phe diet, has profoundly changed its clinical spectrum, resulting in normal cognitive development. We face the first generation of PKU patients perinatally diagnosed and treated who have reached adulthood, whose special needs must be addressed, including feeding through enteral nutrition (EN). However, recommendations regarding EN in PKU constitute a gap in the literature. Although protein substitutes for patients with PKU are offered in multiple forms (Phe-free L-amino acid or casein glycomacropeptide supplements), none of these commercial formulas ensures the whole provision of daily total energy and protein requirements, including a safe amount of Phe. Consequently, the combination of different products becomes necessary when artificial nutrition via tube feeding is required. Importantly, the composition of these specific formulas may result in physicochemical interactions when they are mixed with standard EN products, leading to enteral feeding tubes clogging, and also gastrointestinal concerns due to hyperosmolality. Herein, we present the first reported case of EN use in an adult patient with PKU, where the separate administration of protein substitutes and the other EN products avoided physicochemical interactions.

4.
J Inherit Metab Dis ; 46(6): 1029-1042, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37718653

RESUMO

The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.


Assuntos
Sistemas CRISPR-Cas , Doenças Metabólicas , Humanos , Sistemas CRISPR-Cas/genética , Virulência , Genômica , Doenças Metabólicas/genética
5.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569695

RESUMO

CCDC186 protein is involved in the maturation of dense-core vesicles (DCVs) in the trans-Golgi network in neurons and endocrine cells. Mutations in genes involved in DCV regulation, other than CCDC186, have been described in patients with neurodevelopmental disorders. To date, only one patient, within a large sequencing study of 1000 cases, and a single case report with variants in CCDC186, had previously been described. However, no functional studies in any of these two cases had been performed. We identified three patients from two gypsy families, unrelated to each other, with mutations in the CCDC186 gene. Clinically, all patients presented with seizures, frontotemporal atrophy, hypomyelination, recurrent infections, and endocrine disturbances such as severe non-ketotic hypoglycemia. Low levels of cortisol, insulin, or growth hormone could only be verified in one patient. All of them had a neonatal onset and died between 7 months and 4 years of age. Whole exome sequencing identified a homozygous variant in the CCDC186 gene (c.2215C>T, p.Arg739Ter) in the index patients of both families. Protein expression studies demonstrated that CCDC186 was almost undetectable in fibroblasts and muscle tissue. These observations correlated with the transcriptomic analysis performed in fibroblasts in one of the patients, which showed a significant reduction of CCDC186 mRNA levels. Our study provides functional evidence that mutations in this gene have a pathogenic effect on the protein and reinforces CCDC186 as a new disease-associated gene. In addition, mutations in CCDC186 could explain the combined endocrine and neurologic alterations detected in our patients.


Assuntos
Doenças do Sistema Endócrino , Transtornos do Neurodesenvolvimento , Recém-Nascido , Humanos , Sistema Nervoso Central , Transtornos do Neurodesenvolvimento/genética , Mutação , Rede trans-Golgi
7.
J Inherit Metab Dis ; 46(3): 371-390, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020324

RESUMO

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disease caused by pathogenic variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). We performed an extensive literature search to collect data on GA1 patients, together with unpublished cases, to provide an up-to-date genetic landscape of GCDH pathogenic variants and to investigate potential genotype-phenotype correlation, as this is still poorly understood. From this search, 421 different GCDH pathogenic variants have been identified, including four novel variants; c.179T>C (p.Leu60Pro), c.214C>T (p.Arg72Cys), c.309G>C (p.Leu103Phe), and c.665T>C (p.Phe222Ser).The variants are mostly distributed across the entire gene; although variant frequency in GA1 patients is relatively high in the regions encoding for active domains of GCDH. To investigate potential genotype-phenotype correlations, phenotypic descriptions of 532 patients have been combined and evaluated using novel combinatorial analyses. To do so, various clinical phenotypes were determined for each pathogenic variant by combining the information of all GA1 patients reported with this pathogenic variant, and subsequently mapped onto the 2D and 3D GCDH protein structure. In addition, the predicted pathogenicity of missense variants was analyzed using different in silico prediction score models. Both analyses showed an almost similar distribution of the highly pathogenic variants across the GCDH protein, although some hotspots, including the active domain, were observed. Moreover, it was demonstrated that highly pathogenic variants are significantly correlated with lower residual enzyme activity and the most accurate estimation was achieved by the REVEL score. A clear correlation of the genotype and the clinical phenotype however is still lacking.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Encefalopatias Metabólicas/metabolismo , Mutação de Sentido Incorreto , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo
8.
Brain Pathol ; 33(3): e13134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36450274

RESUMO

Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.


Assuntos
Proteínas de Arabidopsis , Doença de Leigh , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Mitocôndrias/patologia , Proteínas/genética , Mutação/genética , Fenótipo , Proteínas de Ligação a RNA , Proteínas de Arabidopsis/genética
9.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293220

RESUMO

Peroxisomal biogenesis disorders (PBDs) are a heterogeneous group of genetic diseases. Multiple peroxisomal pathways are impaired, and very long chain fatty acids (VLCFA) are the first line biomarkers for the diagnosis. The clinical presentation of PBDs may range from severe, lethal multisystemic disorders to milder, late-onset disease. The vast majority of PBDs belong to Zellweger Spectrum Disordes (ZSDs) and represents a continuum of overlapping clinical symptoms, with Zellweger syndrome being the most severe and Heimler syndrome the less severe disease. Mild clinical conditions frequently present normal or slight biochemical alterations, making the diagnosis of these patients challenging. In the present study we used a combined WES and RNA-seq strategy to diagnose a patient presenting with retinal dystrophy as the main clinical symptom. Results showed the patient was compound heterozygous for mutations in PEX1. VLCFA were normal, but retrospective analysis of lysosphosphatidylcholines (LPC) containing C22:0-C26:0 species was altered. This simple test could avoid the diagnostic odyssey of patients with mild phenotype, such as the individual described here, who was diagnosed very late in adult life. We provide functional data in cell line models that may explain the mild phenotype of the patient by demonstrating the hypomorphic nature of a deep intronic variant altering PEX1 mRNA processing.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Síndrome de Zellweger , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , RNA-Seq , Estudos Retrospectivos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome de Zellweger/diagnóstico , Síndrome de Zellweger/genética , Perda Auditiva Neurossensorial/genética , Biomarcadores , RNA Mensageiro , Ácidos Graxos
10.
Front Physiol ; 13: 898792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936917

RESUMO

ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.

11.
J Mol Diagn ; 24(5): 529-542, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35569879

RESUMO

Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).


Assuntos
Genômica , Doenças Raras , Biologia Computacional , Exoma , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do Exoma
12.
Genome Med ; 14(1): 38, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379322

RESUMO

BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS: We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS: We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION: Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.


Assuntos
RNA , Transcriptoma , Alelos , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma
13.
J Clin Med ; 11(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35330074

RESUMO

The association between Parkinson's disease (PD) and mutations in genes involved in lysosomal and mitochondrial function has been previously reported. However, little is known about the involvement of other genes or cellular mechanisms. We aim to identify novel genetic associations to better understand the pathogenesis of PD. We performed WES in a cohort of 32 PD patients and 30 age-matched controls. We searched for rare variants in 1667 genes: PD-associated, related to lysosomal function and mitochondrial function and TFEB-regulated. When comparing the PD patient cohort with that of age matched controls, a statistically significant burden of rare variants in the previous group of genes were identified. In addition, the Z-score calculation, using the European population database (GnomAD), showed an over-representation of particular variants in 36 genes. Interestingly, 11 of these genes are implicated in mitochondrial function and 18 are TFEB-regulated genes. Our results suggest, for the first time, an involvement of TFEB-regulated genes in the genetic susceptibility to PD. This is remarkable as TFEB factor has been reported to be sequestered inside Lewy bodies, pointing to a role of TFEB in the pathogenesis of PD. Our data also reinforce the involvement of lysosomal and mitochondrial mechanisms in PD.

14.
Hum Mutat ; 43(3): 403-419, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989426

RESUMO

Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.


Assuntos
Epilepsia Generalizada , Microcefalia , Pirofosfatases , Humanos , Inosina , Inosina Trifosfato , Microcefalia/patologia , Mutação , Prognóstico , Pirofosfatases/genética , Inosina Trifosfatase
15.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
16.
Int J Neonatal Screen ; 7(3)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34294672

RESUMO

Newborn screening (NBS) for severe combined immunodeficiency (SCID) started in Catalonia in January-2017, being the first Spanish and European region to universally include this testing. In Spain, a pilot study with 5000 samples was carried out in Seville in 2014; also, a research project with about 35,000 newborns will be carried out in 2021-2022 in the NBS laboratory of Eastern Andalusia. At present, the inclusion of SCID is being evaluated in Spain. The results obtained in the first three and a half years of experience in Catalonia are presented here. All babies born between January-2017 and June-2020 were screened through TREC-quantification in DBS with the Enlite Neonatal TREC-kit from PerkinElmer. A total of 222,857 newborns were screened, of which 48 tested positive. During the study period, three patients were diagnosed with SCID: an incidence of 1 in 74,187 newborns; 17 patients had clinically significant T-cell lymphopenia (non-SCID) with an incidence of 1 in 13,109 newborns who also benefited from the NBS program. The results obtained provide further evidence of the benefits of early diagnosis and curative treatment to justify the inclusion of this disease in NBS programs. A national NBS program is needed, also to define the exact SCID incidence in Spain.

17.
Clin Biochem ; 97: 78-81, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34329621

RESUMO

In the field of laboratory medicine, proficiency testing is a vehicle used to improve the reliability of reported results. When proficiency tests are unavailable for a given analyte, an alternative approach is required to ensure adherence to the International Organization for Standardization (ISO) 15189:2012 standard. In this study, we report the results of a split-sample testing program performed as an alternative to a formal PT. This testing method was based on recommendations provided in the Clinical and Laboratory Standards Institute (CLSI) QMS24 guideline. Two different laboratories measured, in duplicate, the heparan sulfate concentration in five samples using ultra-performance liquid chromatography and tandem mass spectrometry. The data analysis to determine the criterion used for the comparability assessment between the two laboratories was based on Appendix E of the QMS24 guideline. Mean interlaboratory differences fell within the maximum allowable differences calculated from the application of the QMS24 guideline, indicating that the results obtained by the two laboratories were comparable across the concentrations tested. Application of the QMS24 split-sample testing procedure allows laboratories to objectively assess test results, thus providing the evidence needed to face an accreditation audit with confidence. However, due to the limitations of statistical analyses in small samples (participants and/or materials), laboratory specialists should assess whether the maximum allowable differences obtained are suitable for the intended use, and make adjustments if necessary.


Assuntos
Laboratórios Clínicos/normas , Ensaio de Proficiência Laboratorial/métodos , Controle de Qualidade , Cromatografia Líquida/normas , Heparitina Sulfato/análise , Heparitina Sulfato/sangue , Humanos , Espectrometria de Massas em Tandem/normas
18.
J Inherit Metab Dis ; 44(5): 1215-1225, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33973257

RESUMO

Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.


Assuntos
Acil-CoA Desidrogenase/deficiência , Variação Genética , Erros Inatos do Metabolismo Lipídico/genética , Malonatos/metabolismo , Enzima Bifuncional do Peroxissomo/genética , Acil-CoA Desidrogenase/genética , Alelos , Frequência do Gene , Genótipo , Células HEK293 , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase
19.
Orphanet J Rare Dis ; 16(1): 195, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931066

RESUMO

BACKGROUND: Alteration of vitamin B12 metabolism can be genetic or acquired, and can result in anemia, failure to thrive, developmental regression and even irreversible neurologic damage. Therefore, early diagnosis and intervention is critical. Most of the neonatal cases with acquired vitamin B12 deficiency have been detected by clinical symptoms and only few of them trough NBS programs. We aim to assess the usefulness of the second-tier test: methylmalonic acid (MMA), methylcitric acid (MCA) and homocysteine (Hcys) in our newborn screening program and explore the implications on the detection of cobalamin (vitamin B12) related disorders, both genetic and acquired conditions. METHODS: A screening strategy using the usual primary markers followed by the analysis of MMA, MCA and Hcys as second tier-test in the first dried blood spot (DBS) was developed and evaluated. RESULTS: During the period 2015-2018 a total of 258,637 newborns were screened resulting in 130 newborns with acquired vitamin B12 deficiency (incidence 1:1989), 19 with genetic disorders (incidence 1:13,613) and 13 were false positive. No false negatives were notified. Concerning the second-tier test, the percentage of cases with MMA above the cut-off levels, both for genetic and acquired conditions was very similar (58% and 60%, respectively). Interestingly, the percentage of cases with increased levels of Hcys was higher in acquired conditions than in genetic disorders (87% and 47%, respectively). In contrast, MCA was high only in 5% of the acquired conditions versus in 53% of the genetic disorders, and it was always very high in all patients with propionic acidemia. CONCLUSIONS: When screening for methylmalonic acidemia and homocystinuria, differential diagnosis with acquired vitamin B12 deficiency should be done. The results of our strategy support the inclusion of this acquired condition in the NBS programs, as it is easily detectable and allows the adoption of corrective measures to avoid the consequences of its deficiency.


Assuntos
Acidemia Propiônica , Deficiência de Vitamina B 12 , Homocisteína , Humanos , Recém-Nascido , Ácido Metilmalônico , Triagem Neonatal , Vitamina B 12 , Deficiência de Vitamina B 12/diagnóstico , Deficiência de Vitamina B 12/genética , Vitaminas
20.
J Inherit Metab Dis ; 44(2): 401-414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32677093

RESUMO

The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.


Assuntos
Anormalidades Múltiplas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Distonia/genética , Enoil-CoA Hidratase/genética , Doença de Leigh/genética , Tioléster Hidrolases/deficiência , Valina/metabolismo , Encéfalo/diagnóstico por imagem , Pré-Escolar , Distonia/diagnóstico , Enoil-CoA Hidratase/deficiência , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Internacionalidade , Doença de Leigh/diagnóstico , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Redes e Vias Metabólicas/genética , Mutação , Fenótipo , Taxa de Sobrevida , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA