Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(19): 12226-12234, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924461

RESUMO

In a waste management context, predicting the mobility of contaminants is essential. A key issue entails assessing the applicability of current knowledge on adsorption processes to natural systems. Such is the focus herein for nickel in interaction with Callovo-Oxfordian (COx) clay rock, a formation selected in France for possible radioactive waste disposal. The challenge is to link predictive modeling results with the experimental data characterizing the behavior of the labile and naturally occurring Ni fraction by implementing a new simple method. Retention studies on compact systems serve to complete this work. Combined electron microprobe and laser ablation high-resolution inductively coupled plasma mass spectrometry data show that natural Ni (∼39 mg kg-1) is homogeneously distributed within the clay matrix, which corresponds to the main reservoir (∼70%). Data interpretation of desorption tests yields an in situ Kd value of ∼80 L kg-1 and a labile Ni amount of ∼5 mg kg-1, that is, ∼13% of the Ni inventory. Predictive modeling explains the sorption data in considering that only weak clay fraction sites take part in the adsorption. The role of the clay matrix in Ni retention is confirmed by analyzing the Ni-spiked compact COx samples, whereby an increase of the Ni content in the clay fraction is observed following the retention experiment.


Assuntos
Níquel , Resíduos Radioativos , Adsorção , Silicatos de Alumínio , Argila , França , Resíduos Radioativos/análise
2.
J Contam Hydrol ; 164: 308-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25041732

RESUMO

Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw=1.9kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21days and for a range of PMA initial concentrations from 4.5×10(-7) to 1.4×10(-3)mol.L(-1). The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10(-2) mol.kg(-1) distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was completed after 1day and represented 96% of the total sorption on this site. On the weak site the irreversible uptake was slower and completed only after 16days but it also dominated the sorption. 85% of the PMA sorbed on the weak site was not desorbable after 21days of sorption. The migration of PMA was studied by applying a hydraulic gradient to a clay core inserted in a stainless steel cell. Breakthrough of polymaleic acid, simulated with a 1D transport model including the two-box first-order non-reversible model, revealed that the mobility of PMA was limited by the same set of reversible/irreversible interactions as observed in the dispersed system. However, to describe efficiently the transport, the total sorption capacity had to be reduced to 33% of the capacity estimated in batch experiments. The irreversible sorption on the weak site was also slower in the intact sample than in the crushed sample. Geometrical constraints would therefore affect both the accessibility to the sorption sites and the kinetics of the irreversible sorption process.


Assuntos
Maleatos/química , Modelos Químicos , Compostos Orgânicos/química , Adsorção , Silicatos de Alumínio , Carbono/química , Argila , Água Subterrânea , Cinética , Maleatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA