Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ACS Infect Dis ; 8(8): 1449-1467, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35815896

RESUMO

New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetic binding parameters of antibiotics targeting dihydrofolate reductase (DHFR) in live bacteria. We also used this assay to identify novel DHFR ligands having antimicrobial activity. We validated this approach using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of target engagement assays in bacteria to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Escherichia coli/metabolismo , Bactérias Gram-Negativas , Humanos , Tetra-Hidrofolato Desidrogenase/química
2.
RSC Med Chem ; 12(1): 103-109, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046602

RESUMO

Mycobacterium ulcerans is the causative agent of Buruli ulcer, a debilitating chronic disease that mainly affects the skin. Current treatments for Buruli ulcer are efficacious, but rely on the use of antibiotics with severe side effects. The enzyme dihydrofolate reductase (DHFR) plays a critical role in the de novo biosynthesis of folate species and is a validated target for several antimicrobials. Here we describe the biochemical and structural characterization of M. ulcerans DHFR and identified P218, a safe antifolate compound in clinical evaluation for malaria, as a potent inhibitor of this enzyme. We expect our results to advance M. ulcerans DHFR as a target for future structure-based drug discovery campaigns.

3.
mBio ; 9(5)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327441

RESUMO

Pathogens are exposed to toxic levels of copper during infection, and copper tolerance may be a general virulence mechanism used by bacteria to resist host defenses. In support of this, inactivation of copper exporter genes has been found to reduce the virulence of bacterial pathogens in vivo Here we investigate the role of copper hypertolerance in methicillin-resistant Staphylococcus aureus (MRSA). We show that a copper hypertolerance operon (copB-mco), carried on a mobile genetic element (MGE), is prevalent in a collection of invasive S. aureus strains and more widely among clonal complex 22, 30, and 398 strains. The copB and mco genes encode a copper efflux pump and a multicopper oxidase, respectively. Isogenic mutants lacking copB or mco had impaired growth in subinhibitory concentrations of copper. Transfer of a copB-mco-carrying plasmid to a naive clinical isolate resulted in a gain of copper hypertolerance and enhanced bacterial survival inside primed macrophages. The copB and mco genes were upregulated within infected macrophages, and their expression was dependent on the copper-sensitive operon repressor CsoR. Isogenic copB and mco mutants were impaired in their ability to persist intracellularly in macrophages and were less resistant to phagocytic killing in human blood than the parent strain. The importance of copper-regulated genes in resistance to phagocytic killing was further elaborated using mutants expressing a copper-insensitive variant of CsoR. Our findings suggest that the gain of mobile genetic elements carrying copper hypertolerance genes contributes to the evolution of virulent strains of S. aureus that are better equipped to resist killing by host immune cells.IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) poses a substantial threat to human health worldwide and evolves rapidly by acquiring mobile genetic elements, such as plasmids. Here we investigate how the copB-mco copper hypertolerance operon carried on a mobile genetic element contributes to the virulence potential of clinical isolates of MRSA. Copper is a key component of innate immune bactericidal defenses. Here we show that copper hypertolerance genes enhance the survival of S. aureus inside primed macrophages and in whole human blood. The copB and mco genes are carried by clinical isolates responsible for invasive infections across Europe, and more broadly among three successful clonal lineages of S. aureus Our findings show that a gain of copper hypertolerance genes increases the resistance of MRSA to phagocytic killing by host immune cells and imply that acquisition of this mobile genetic element can contribute to the success of MRSA.


Assuntos
Antibacterianos/metabolismo , Cobre/metabolismo , Tolerância a Medicamentos , Sequências Repetitivas Dispersas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fagócitos/imunologia , Animais , Antibacterianos/toxicidade , Transporte Biológico Ativo , Cobre/toxicidade , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos , Óperon , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Fagócitos/microbiologia , Plasmídeos , Células RAW 264.7
4.
Environ Microbiol ; 20(4): 1576-1589, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29521441

RESUMO

Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity.


Assuntos
Antibacterianos/toxicidade , Cobre/toxicidade , Farmacorresistência Bacteriana/genética , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Staphylococcus aureus Resistente à Meticilina , Transferência Genética Horizontal/genética , Humanos , Imunidade Inata/imunologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Óperon , Infecções Estafilocócicas/microbiologia
5.
Biochim Biophys Acta ; 1814(12): 1910-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21835272

RESUMO

Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups that play essential roles in all living organisms. In vivo [Fe-S] cluster biogenesis requires enzymes involved in iron and sulfur mobilization, assembly of clusters, and delivery to their final acceptor. In these systems, a cysteine desulfurase is responsible for the release of sulfide ions, which are incorporated into a scaffold protein for subsequent [Fe-S] cluster assembly. Although three machineries have been shown to be present in Proteobacteria for [Fe-S] cluster biogenesis (NIF, ISC, and SUF), only the SUF machinery has been found in Firmicutes. We have recently described the structural similarities and differences between Enterococcus faecalis and Escherichia coli SufU proteins, which prompted the proposal that SufU is the scaffold protein of the E. faecalis sufCDSUB system. The present work aims at elucidating the biological roles of E. faecalis SufS and SufU proteins in [Fe-S] cluster assembly. We show that SufS has cysteine desulfurase activity and cysteine-365 plays an essential role in catalysis. SufS requires SufU as activator to [4Fe-4S] cluster assembly, as its ortholog, IscU, in which the conserved cysteine-153 acts as a proximal sulfur acceptor for transpersulfurization reaction.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Cisteína/metabolismo , Enterococcus faecalis/enzimologia , Proteínas Ferro-Enxofre/fisiologia , Enxofre/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/isolamento & purificação , Clonagem Molecular , Cisteína/química , Enterococcus faecalis/química , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Ativação Enzimática , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato , Enxofre/química
6.
FEMS Microbiol Lett ; 320(1): 15-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21480963

RESUMO

Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups that play essential roles in all living organisms. Iron and sulfur mobilization, formation of [Fe-S] clusters, and delivery to its final protein targets involves a complex set of specific protein machinery. Proteobacteria has three systems of [Fe-S] biogenesis, designated NIF, ISC, and SUF. In contrast, the Firmicutes system is not well characterized and has only one system, formed mostly by SUF homologs. The Firmicutes phylum corresponds to a group of pathological bacteria, of which Enterococcus faecalis is a clinically relevant representative. Recently, the E. faecalis sufCDSUB [Fe-S] cluster biosynthetic machinery has been identified, although there is no further information available about the similarities and/or variations of Proteobacteria and Firmicutes systems. The aim of the present work was to compare the ability of the different Proteobacteria and Firmicutes systems to complement the Azotobacter vinelandii and Escherichia coli ISC and SUF systems. Indeed, E. faecalis sufCDSUB is able to complement the E. coli SUF system, allowing viable mutants of both sufABCDSE and iscRSU-hscBA-fdx systems. The presence of all E. faecalis SUF factors enables proper functional interactions, which would not otherwise occur in proteins from different systems.


Assuntos
Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas Ferro-Enxofre/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Proteínas Ferro-Enxofre/metabolismo
7.
BMC Biochem ; 10: 3, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19187533

RESUMO

BACKGROUND: Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. RESULTS: BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. CONCLUSION: The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested as a possible candidate for interaction with other factors and/or regulators.


Assuntos
Enterococcus faecalis/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Enterococcus faecalis/classificação , Genoma Bacteriano/genética , Bactérias Gram-Positivas/metabolismo , Proteínas Ferro-Enxofre/classificação , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA