Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660804

RESUMO

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Assuntos
Plaquetas , Ciclo-Oxigenase 1 , Modelos Animais de Doenças , Integrases , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Plaquetária , Fator Plaquetário 4 , Receptores de LDL , Animais , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/deficiência , Agregação Plaquetária/efeitos dos fármacos , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Integrases/genética , Receptores de LDL/genética , Receptores de LDL/deficiência , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Aterosclerose/sangue , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/enzimologia , Fenótipo , Proteínas de Membrana , Complexo Glicoproteico GPIb-IX de Plaquetas
2.
Arterioscler Thromb Vasc Biol ; 44(3): 558-583, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269585

RESUMO

Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Prostaglandinas , Remodelação Vascular , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Anti-Inflamatórios não Esteroides/efeitos adversos , Ciclo-Oxigenase 2 , Insuficiência Cardíaca/induzido quimicamente , Hipertensão/induzido quimicamente
3.
Clin Transl Med ; 13(11): e1440, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37948331

RESUMO

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Assuntos
COVID-19 , Fosfolipases A2 Secretórias , Sepse , Humanos , SARS-CoV-2 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Lipidômica , Leucócitos Mononucleares , Leucotrieno E4 , Prostaglandina D2 , Ciclo-Oxigenase 2 , Eicosanoides
4.
bioRxiv ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37398323

RESUMO

Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.

5.
6.
Blood ; 141(13): 1553-1559, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36574346

RESUMO

Advances in genomic diagnostics hold promise for improved care of rare hematologic diseases. Here, we describe a novel targeted therapeutic approach for Ghosal hematodiaphyseal dysplasia, an autosomal recessive disease characterized by severe normocytic anemia and bone abnormalities due to loss-of-function mutations in thromboxane A synthase 1 (TBXAS1). TBXAS1 metabolizes prostaglandin H2 (PGH2), a cyclooxygenase (COX) product of arachidonic acid, into thromboxane A2. Loss-of-function mutations in TBXAS result in an increase in PGH2 availability for other PG synthases. The current treatment for Ghosal hematodiaphyseal dysplasia syndrome consists of corticosteroids. We hypothesize that nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit COX-1 and COX-2, could ameliorate the effects of TBXAS1 loss and improve hematologic function by reducing prostaglandin formation. We treated 2 patients with Ghosal hematodiaphyseal dysplasia syndrome, an adult and a child, with standard doses of NSAIDs (aspirin or ibuprofen). Both patients had rapid improvements concerning hematologic parameters and inflammatory markers without adverse events. Mass spectrometry analysis demonstrated that urinary PG metabolites were increased along with proinflammatory lipoxygenase (LOX) products 5-hydroxyeicosatetraenoic acid and leukotriene E4. Our data show that NSAIDs at standard doses surprisingly reduced both COX and LOX products, leading to the resolution of cytopenia, and should be considered for first-line treatment for Ghosal hematodiaphyseal dysplasia syndrome.


Assuntos
Anemia Refratária , Anemia , Pancitopenia , Adulto , Criança , Humanos , Anemia Refratária/tratamento farmacológico , Anemia Refratária/genética , Anti-Inflamatórios não Esteroides/uso terapêutico , Anemia/tratamento farmacológico , Prostaglandina H2 , Síndrome , Transtornos da Insuficiência da Medula Óssea
8.
Adv Biol Regul ; 81: 100818, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303107

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by a wide spectrum of symptom severity, which is manifested at different phases of infection and demands different levels of care. Viral load, host innate-immune response to SARS-CoV-2, and comorbidities have a direct impact on the clinical outcomes of COVID-19 patients and determine the diverse disease trajectories. The initial SARS-CoV-2 penetrance and replication in the host causes death of infected cells, determining the viral response. SARS-CoV-2 replication in the host triggers the activation of host antiviral immune mechanisms, determining the inflammatory response. While a healthy immune response is essential to eliminate infected cells and prevent spread of the virus, a dysfunctional immune response can result in a cytokine storm and hyperinflammation, contributing to disease progression. Current therapies for COVID-19 target the virus and/or the host immune system and may be complicated in their efficacy by comorbidities. Here we review the evidence for use of two classes of anti-inflammatory drugs, glucocorticoids and nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of COVID-19. We consider the clinical evidence regarding the timing and efficacy of their use, their potential limitations, current recommendations and the prospect of future studies by these and related therapies.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Tratamento Farmacológico da COVID-19 , Glucocorticoides/uso terapêutico , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , COVID-19/epidemiologia , COVID-19/imunologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/epidemiologia , Síndrome da Liberação de Citocina/imunologia , Humanos , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Replicação Viral/imunologia
9.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34101620

RESUMO

Inhibitors of microsomal prostaglandin E synthase 1 (mPGES-1) are in the early phase of clinical development. Deletion of mPges-1 in mice confers analgesia, restrains atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2 (PGE2), but increasing the biosynthesis of prostacyclin (PGI2). In low-density lipoprotein receptor-deficient (Ldlr-/-) mice, this last effect represents the dominant mechanism by which mPges-1 deletion restrains thrombogenesis, while suppression of PGE2 accounts for its antiatherogenic effect. However, the effect of mPges-1 depletion on blood pressure (BP) in this setting remains unknown. Here, we show that mPges-1 depletion significantly increased the BP response to salt loading in male Ldlr-/- mice, whereas, despite the direct vasodilator properties of PGI2, deletion of the I prostanoid receptor (Ipr) suppressed this response. Furthermore, combined deletion of the Ipr abrogated the exaggerated BP response in male mPges-1-/- mice. Interestingly, these unexpected BP phenotypes were not observed in female mice fed a high-salt diet (HSD). This is attributable to the protective effect of estrogen in Ldlr-/- mice and in Ipr-/- Ldlr-/- mice. Thus, estrogen compensates for a deficiency in PGI2 to maintain BP homeostasis in response to high salt in hyperlipidemic female mice. In male mice, by contrast, the augmented formation of atrial natriuretic peptide (ANP) plays a similar compensatory role, restraining hypertension and oxidant stress in the setting of Ipr depletion. Hence, men with hyperlipidemia on a HSD might be at risk of a hypertensive response to mPGES-1 inhibitors.


Assuntos
Pressão Sanguínea , Homeostase , Receptores de Epoprostenol/deficiência , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Receptores de Epoprostenol/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
10.
Cancer Res ; 81(14): 3751-3761, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33893087

RESUMO

Preclinical and clinical studies provide evidence for aspirin as a preventative agent for cancer. Compelling direct evidence supports a chemopreventive effect of aspirin in individuals at high risk of developing colorectal cancer due to Lynch syndrome, while indirect evidence indicates that aspirin may reduce the risk of and mortality from sporadic colorectal cancer. There is weaker evidence for a protective effect of aspirin against all cancers taken as a group. Nevertheless, the results of recent retrospective cohort studies consistently indicate a beneficial effect of aspirin as a chemopreventive or adjuvant chemotherapeutic agent in hepatocellular carcinoma (HCC). Epidemiologic studies conducted in the general population or in selected populations at higher risk for HCC reveal that regular aspirin use is associated with reduced HCC incidence. In addition, aspirin may act as an adjuvant to other therapies in reducing HCC recurrence. According to studies in animal models, the cancer-preventative effect of aspirin may be related to its antiplatelet and anti-inflammatory activities. Prospective studies are warranted to determine whether aspirin should be recommended to diverse populations of patients at risk for HCC.


Assuntos
Aspirina/uso terapêutico , Carcinoma Hepatocelular/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Aspirina/farmacologia , Humanos , Estudos Retrospectivos
11.
Annu Rev Med ; 72: 473-495, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502899

RESUMO

More than a century after its synthesis, daily aspirin, given at a low dose, is a milestone treatment for the secondary prevention of cardiovascular disease (CVD). Its role in primary prevention of CVD is still debated. Older randomized controlled trials showed that aspirin reduced the low incidence of myocardial infarction but correspondingly increased the low incidence of serious gastrointestinal bleeds without altering mortality. More recent trials see the benefit attenuated, perhaps obscured by other cardioprotective practices, while the bleeding risk remains, especially in older patients. Indirect evidence, both preclinical and clinical, suggests that aspirin may protect against sporadic colorectal cancer and perhaps other cancers. However, further studies are still necessary to warrant the consumption of aspirin for primary prevention of CVD and cancer by apparently healthy individuals.


Assuntos
Aspirina/farmacologia , Doenças Cardiovasculares/prevenção & controle , Neoplasias/prevenção & controle , Prevenção Primária/métodos , Medição de Risco/métodos , Prevenção Secundária/métodos , Anti-Inflamatórios não Esteroides/uso terapêutico , Doenças Cardiovasculares/epidemiologia , Saúde Global , Humanos , Incidência , Neoplasias/epidemiologia
12.
Front Public Health ; 9: 751451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976917

RESUMO

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, providing safe in-person schooling has been a dynamic process balancing evolving community disease burden, scientific information, and local regulatory requirements with the mandate for education. Considerations include the health risks of SARS-CoV-2 infection and its post-acute sequelae, the impact of remote learning or periods of quarantine on education and well-being of children, and the contribution of schools to viral circulation in the community. The risk for infections that may occur within schools is related to the incidence of SARS-CoV-2 infections within the local community. Thus, persistent suppression of viral circulation in the community through effective public health measures including vaccination is critical to in-person schooling. Evidence suggests that the likelihood of transmission of SARS-CoV-2 within schools can be minimized if mitigation strategies are rationally combined. This article reviews evidence-based approaches and practices for the continual operation of in-person schooling.


Assuntos
COVID-19 , Pandemias , Criança , Humanos , Pandemias/prevenção & controle , Quarentena , SARS-CoV-2 , Instituições Acadêmicas
13.
Adv Exp Med Biol ; 1274: 29-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894506

RESUMO

Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.


Assuntos
Antagonistas de Prostaglandina/farmacologia , Antagonistas de Prostaglandina/uso terapêutico , Prostaglandinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Humanos , Prostaglandina-Endoperóxido Sintases/metabolismo
14.
Front Pharmacol ; 11: 1153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848762

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV) complications. Moreover, NSAID use is characterized by a remarkable individual variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of adverse effects. The interaction between the gut microbiota and host has emerged as a key player in modulating host physiology, gut microbiota-related disorders, and metabolism of xenobiotics. Indeed, host-gut microbiota dynamic interactions influence NSAID disposition, therapeutic efficacy, and toxicity. The gut microbiota can directly cause chemical modifications of the NSAID or can indirectly influence its absorption or metabolism by regulating host metabolic enzymes or processes, which may have consequences for drug pharmacokinetic and pharmacodynamic properties. NSAID itself can directly impact the composition and function of the gut microbiota or indirectly alter the physiological properties or functions of the host which may, in turn, precipitate in dysbiosis. Thus, the complex interconnectedness between host-gut microbiota and drug may contribute to the variability in NSAID response and ultimately influence the outcome of NSAID therapy. Herein, we review the interplay between host-gut microbiota and NSAID and its consequences for both drug efficacy and toxicity, mainly in the GI tract. In addition, we highlight progress towards microbiota-based intervention to reduce NSAID-induced enteropathy.

15.
Antioxidants (Basel) ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492880

RESUMO

Matrix metalloproteinases (MMPs) play a crucial role in tumor angiogenesis, and metastasis. 4'-geranyloxyferulic acid (GOFA) has anti-tumor and anti-inflammatory proprieties. Herein, we aimed to determine whether this compound affects cell survival, invasion, and migration through reactive oxygen species (ROS)-mediated MMPs activation of extracellular signal-regulated kinases (ERKs) and p38 signaling in lymphocytic histiocytoma (U937) and colorectal cancer (HCT116) cells. We observed that lipopolysaccharide (LPS) stimulated U937 and HCT116 cells presented abnormal cell proliferation and increased metalloproteinase (MMP-9) activity and expression. Non-cytotoxic doses of GOFA blunted matrix invasive potential by reducing LPS-induced MMP-9 expression and cell migration via inhibiting ROS/ ERK pathway. GOFA also attenuated apoptosis and cell senescence. Our findings indicate that GOFA, inhibiting cancer cell proliferation and migration, could be therapeutically beneficial to prevent tumor metastasis.

16.
Front Pharmacol ; 11: 374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317963

RESUMO

RATIONALE: The development of inhibitors of microsomal prostaglandin (PG)E2 synthase-1 (mPGES-1) was driven by the promise of attaining antiinflammatory agents with a safe cardiovascular profile because of the possible diversion of the accumulated substrate, PGH2, towards prostacyclin (PGI2). OBJECTIVES: We studied the effect of the human mPGES-1 inhibitor, AF3485 (a benzamide derivative) on prostanoid biosynthesis in human whole blood in vitro. To characterize possible off-target effects of the compound, we evaluated: i)the impact of its administration on the systemic biosynthesis of prostanoids in a model of complete Freund's adjuvant (CFA)-induced monoarthritis in rats; ii) the effects on cyclooxygenase (COX)-2 expression and the biosynthesis of prostanoids in human monocytes and human umbilical vein endothelial cells (HUVECs) in vitro. METHODS: Prostanoids were assessed in different cellular models by immunoassays. The effect of the administration of AF3485 (30 and 100 mg/kg,i.p.) or celecoxib (20mg/kg, i.p.), for 3 days, on the urinary levels of enzymatic metabolites of prostanoids, PGE-M, PGI-M, and TX-M were assessed by LC-MS. RESULTS: In LPS-stimulated whole blood, AF3485 inhibited PGE2 biosynthesis, in a concentration-dependent fashion. At 100µM, PGE2 levels were reduced by 66.06 ± 3.30%, associated with a lower extent of TXB2 inhibition (40.56 ± 5.77%). AF3485 administration to CFA-treated rats significantly reduced PGE-M (P < 0.01) and TX-M (P < 0.05) similar to the selective COX-2 inhibitor, celecoxib. In contrast, AF3485 induced a significant (P < 0.05) increase of urinary PGI-M while it was reduced by celecoxib. In LPS-stimulated human monocytes, AF3485 inhibited PGE2 biosynthesis with an IC50 value of 3.03 µM (95% CI:0.5-8.75). At 1µM, AF3485 enhanced TXB2 while at higher concentrations, the drug caused a concentration-dependent inhibition of TXB2. At 100 µM, maximal inhibition of the two prostanoids was associated with the downregulation of COX-2 protein by 86%. These effects did not involve AMPK pathway activation, IkB stabilization, or PPARγ activation. In HUVEC, AF3485 at 100 µM caused a significant (P < 0.05) induction of COX-2 protein associated with enhanced PGI2 production. These effects were reversed by the PPARγ antagonist GW9662. CONCLUSIONS: The inhibitor of human mPGES-1 AF3485 is a novel antiinflammatory compound which can also modulate COX-2 induction by inflammatory stimuli. The compound also induces endothelial COX-2-dependent PGI2 production via PPARγ activation, both in vitro and in vivo, which might translate into a protective effect for the cardiovascular system.

17.
Chem Sci ; 11(44): 11998-12008, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34094421

RESUMO

Low-density lipoprotein (LDL)-mimetic lipid nanoparticles (LNPs), decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachment of apolipoprotein-mimetic peptide (P), Gd(iii)-chelate (Gd), and sulforhodamine B (R) moieties on the LNP surface. The functionalized LNPs were prepared using the amide-forming potassium acyltrifluoroborate (KAT) ligation reaction. The KAT groups on the surface of LNPs were allowed to react with the corresponding hydroxylamine (HA) derivatives of P and Gd to provide bi-functionalized LNPs (PGd-LNP). The reaction proceeded with excellent yields, as observed by ICP-MS (for B and Gd amounts) and MALDI-TOF-MS data, and did not alter the morphology of the LNPs (mean diameter: ca. 50 nm), as shown by DLS and cryoTEM analyses. With the help of the efficient KAT ligation, a high payload of Gd(iii)-chelate on the PGd-LNP surface (ca. 2800 Gd atoms per LNP) was successfully achieved and provided a high r 1 relaxivity (r 1 = 22.0 s-1 mM-1 at 1.4 T/60 MHz and 25 °C; r 1 = 8.2 s-1 mM-1 at 9.4 T/400 MHz and 37 °C). This bi-functionalized PGd-LNP was administered to three atherosclerotic apoE -/- mice to reveal the clear enhancement of atherosclerotic plaques in the brachiocephalic artery (BA) by MRI, in good agreement with the high accumulation of Gd in the aortic arch as shown by ICP-MS. The parallel in vivo MRI and ex vivo studies of whole mouse cryo-imaging were performed using triply functionalized LNPs with P, Gd, and R (PGdR-LNP). The clear presence of atherosclerotic plaques in BA was observed by ex vivo bright field cryo-imaging, and they were also observed by high emission fluorescent imaging. These directly corresponded to the enhanced tissue in the in vivo MRI of the identical mouse.

18.
Sci Rep ; 9(1): 13477, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530843

RESUMO

Library preparation is a key step in sequencing. For RNA sequencing there are advantages to both strand specificity and working with minute starting material, yet until recently there was no kit available enabling both. The Illumina TruSeq stranded mRNA Sample Preparation kit (TruSeq) requires abundant starting material while the Takara Bio SMART-Seq v4 Ultra Low Input RNA kit (V4) sacrifices strand specificity. The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Pico) by Takara Bio claims to overcome these limitations. Comparative evaluation of these kits is important for selecting the appropriate protocol. We compared the three kits in a realistic differential expression analysis. We prepared and sequenced samples from two experimental conditions of biological interest with each of the three kits. We report differences between the kits at the level of differential gene expression; for example, the Pico kit results in 55% fewer differentially expressed genes than TruSeq. Nevertheless, the agreement of the observed enriched pathways suggests that comparable functional results can be obtained. In summary we conclude that the Pico kit sufficiently reproduces the results of the other kits at the level of pathway analysis while providing a combination of options that is not available in the other kits.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fígado/metabolismo , Masculino , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de RNA/métodos , Transcriptoma
19.
Pharmacol Res ; 149: 104456, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31553935

RESUMO

Prostaglandins (PG) are pleiotropic bioactive lipids involved in the control of many physiological processes, including key roles in regulating inflammation. This links PG to the modulation of the quality and magnitude of immune responses. T cells, as a core part of the immune system, respond readily to inflammatory cues from their environment, and express a diverse array of PG receptors that contribute to their function and phenotype. Here we put in context our knowledge about how PG affect T cell biology, and review advances that bring light into how specific T cell functions that have been newly discovered are modulated through PG. We will also comment on drugs that target PG metabolism and sensing, their effect on T cell function during disease, and we will finally discuss how we can design new approaches that modulate PG in order to maximize desired therapeutic T cell effects.


Assuntos
Prostaglandinas/imunologia , Linfócitos T/imunologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Descoberta de Drogas , Humanos , Imunidade/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Prostaglandinas/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
20.
Antioxidants (Basel) ; 8(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430883

RESUMO

The L-3,4-dihydroxyphenylalanine (LD) is the gold standard drug currently used to manage Parkinson's disease (PD) and to control its symptoms. However, LD could cause disease neurotoxicity due to the generation of pro-oxidant intermediates deriving from its autoxidation. In order to overcome this limitation, we have conjugated LD to the natural antioxidant glutathione (GSH) to form a codrug (GSH-LD). Here we investigated the effect of GSH-LD on H2O2-induced cellular toxicity in undifferentiated and differentiated lymphoma U-937 and dopaminergic neuroblastoma SH-SY5Y cell lines, used respectively as models to study the involvement of macrophages/microglia and dopaminergic neurons in PD. We analyzed the effect of GSH-LD on apoptosis and cellular oxidative stress, both considered strategic targets for the prevention and treatment of neurodegenerative diseases. Compared to LD and GSH, GSH-LD had a stronger effect in preventing hydrogen peroxide (H2O2) induced apoptosis in both cell lines. Moreover, GSH-LD was able to preserve cell viability, cellular redox status, gluthation metabolism and prevent reactive oxygen species (ROS) formation, in a phosphinositide 3-kinase (PI3K)/kinase B (Akt)-dependent manner, in a neurotoxicity cellular model. Our findings indicate that the GSH-LD codrug offers advantages deriving from the additive effect of LD and GSH and it could represent a promising candidate for PD treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA