Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3636, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574369

RESUMO

Wind turbines are a relatively new threat to bats, causing mortalities worldwide. Reducing these fatalities is essential to ensure that the global increase in wind-energy facilities can occur with minimal impact on bat populations. Although individual bats have been observed approaching wind turbines, and fatalities frequently reported, it is unclear whether bats are actively attracted to, indifferent to, or repelled by, the turbines at large wind-energy installations. In this study, we assessed bat activity at paired turbine and control locations at 23 British wind farms. The research focussed on Pipistrellus species, which were by far the most abundant bats recorded at these sites. P. pipistrellus activity was 37% higher at turbines than at control locations, whereas P. pygmaeus activity was consistent with no attraction or repulsion by turbines. Given that more than 50% of bat fatalities in Europe are P. pipistrellus, these findings help explain why Environmental Impact Assessments conducted before the installation of turbines are poor predictors of actual fatality rates. They also suggest that operational mitigation (minimising blade rotation in periods of high collision risk) is likely to be the most effective way to reduce collisions because the presence of turbines alters bat activity.


Assuntos
Quirópteros/fisiologia , Centrais Elétricas , Energia Renovável , Vento , Animais , Intervalos de Confiança , Ecossistema
2.
Curr Biol ; 26(21): R1135-R1136, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27825446

RESUMO

Demand for renewable energy is rising exponentially. While this has benefits in reducing greenhouse gas emissions, there may be costs to biodiversity [1]. Environmental Impact Assessments (EIAs) are the main tool used across the world to predict the overall positive and negative effects of renewable energy developments before planning consent is given, and the Ecological Impact Assessments (EcIAs) within them assess their species-specific effects. Given that EIAs are undertaken globally, are extremely expensive, and are enshrined in legislation, their place in evidence-based decision making deserves evaluation. Here we assess how well EIAs of wind-farm developments protect bats. We found they do not predict the risks to bats accurately, and even in those cases where high risk was correctly identified, the mitigation deployed did not avert the risk. Given that the primary purpose of an EIA is to make planning decisions evidence-based, our results indicate that EIA mitigation strategies used to date have been ineffective in protecting bats. In the future, greater emphasis should be placed on assessing the actual impacts post-construction and on developing effective mitigation strategies.


Assuntos
Biodiversidade , Quirópteros , Conservação dos Recursos Naturais , Energia Renovável , Animais , Mortalidade , Reino Unido , Vento
3.
J Wildl Manage ; 77(3): 545-554, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23761940

RESUMO

The introduction of American mink (Neovison vison; hereafter mink) into Europe has had severe impacts on many native wildlife species, including the water vole (Arvicola amphibius) in mainland Britain. Although trapping has been widely used to attempt to control mink, managers have little direct evidence of its effect on mink density or distribution, particularly where immigration of mink from nearby areas is inevitable. Such evidence is needed to justify the use of lethal methods in conservation policy. During 2006-2010 we removed mink from the River Monnow Catchment in western Britain, using track-recording rafts to monitor continuously for mink presence, guiding a strategic trapping effort. The area monitored and trapped was increased in stages, from a core sub-catchment with 109 km of water-course in 2006, to a 421-km2 catchment with 203 km of water-course in 2009. In each successive sub-catchment, mink detection and capture rates declined rapidly to near-zero levels after trapping began. Detections and captures showed seasonal peaks in every year corresponding to known dispersal periods, but also declined steadily from year to year, with increasing periods in which we did not detect mink. These results suggested that each sub-catchment was cleared of mink within a few months, with subsequent captures attributable to immigration. On average, we detected each mink 5.1 times before capture (daily probability of detection = 0.059 per mink and raft), and trapped them 3.4 days after deploying traps in response. On average, mink entering the area were likely to have been present for less than 13 days before capture. Water voles had been extinct in the Monnow Catchment since the 1980s. During 2006-2008 (starting 6 months after mink trapping commenced), we released 700 captive-bred water voles into the treatment area to re-establish a wild population. Persistence of this population through the 4 years of the project was considered indicative of effective mink control. This study demonstrates that, even in a mainland context, a systematic trapping strategy can have a substantial impact on the density and distribution of a damaging species, in this case allowing the restoration of a native prey species. © 2013 The Wildlife Society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA