Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21554, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513681

RESUMO

Whale entanglements with fishing gear, exacerbated by changing environmental conditions, pose significant risk to whale populations. Management tools used to reduce entanglement risk, for example temporary area restrictions on fishing, can have negative economic consequences for fishing communities. Balancing whale protection with sustaining productive fisheries is therefore a challenge experienced worldwide. In the California Current Ecosystem, ecosystem indicators have been used to understand the environmental dynamics that lead to increased whale entanglement risk in a lucrative crab fishery. However, an assessment of socio-economic risk for this fishery, as in many other regions, is missing. We estimate retrospectively the losses from ex-vessel revenue experienced by commercial Dungeness crab fishers in California during two seasons subject to whale entanglement mitigation measures using a Linear-Cragg hurdle modeling approach which incorporated estimates of pre-season crab abundance. In the 2020 fishing season, our results suggest total revenues would have been $14.4 million higher in the Central Management Area of California in the absence of closures and other disturbances. In the 2019 fishing season, our results suggest ex-vessel revenues would have been $9.4 million higher in the Central Management Area and $0.3 million higher in the Northern Management Area. Our evaluation should motivate the development of strategies which maximize whale protection whilst promoting productive, sustainable and economically-viable fisheries.


Assuntos
Braquiúros , Pesqueiros , Animais , Baleias , Ecossistema , Estudos Retrospectivos , Estações do Ano , Conservação dos Recursos Naturais/métodos
2.
Glob Chang Biol ; 28(22): 6586-6601, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978484

RESUMO

Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change.


Assuntos
Mudança Climática , Ecossistema , Pesqueiros , Previsões , Incerteza
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058364

RESUMO

While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.


Assuntos
Pesqueiros , Conservação dos Recursos Naturais , Ecossistema , Oceanografia
4.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802817

RESUMO

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Assuntos
Organismos Aquáticos , Mudança Climática , Camada de Gelo , Regiões Antárticas , Biota , Ecossistema , Oceanos e Mares , Movimentos da Água , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA