Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Phytopathology ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831567

RESUMO

Net blotch disease caused by Drechslera teres is a major fungal disease that affects barley (Hordeum vulgare) plants and can result in significant crop losses. In this study, we developed a deep-learning model to quantify net blotch disease symptoms on different days post-infection on seedling leaves using Cascade R-CNN (Region-Based Convolutional Neural Networks) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4-days post infection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.

2.
Appl Microbiol Biotechnol ; 108(1): 64, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189957

RESUMO

Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.


Assuntos
Fungicidas Industriais , Hordeum , Doenças das Plantas , Cromatografia Líquida , Produtos Agrícolas , Lipopeptídeos , Resistência Sistêmica Adquirida da Planta , Espectrometria de Massas em Tandem , Triticum , Doenças das Plantas/prevenção & controle
3.
J Interv Cardiol ; 2023: 8907315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125031

RESUMO

Objectives: The aim of this postmarket clinical study was to assess the safety and efficacy of the latest generation polymer-free sirolimus-eluting stents (PF-SES) in an all-comers population comparing outcomes in stable coronary artery disease (CAD) versus acute coronary syndrome (ACS) in France. Background: The efficacy and safety of the first-generation PF-SES have already been demonstrated by randomized controlled trials and "all-comers" observational studies. Methods: For this all-comers observational, prospective, multicenter study, 1456 patients were recruited in 22 French centers. The primary endpoint was target lesion revascularization (TLR) rate at 12 months and secondary endpoints included major adverse cardiac events (MACE) and bleeding. Results: 895 patients had stable CAD and 561 had ACS. At 12 months, 2% of patients had a TLR, with similar rates between stable CAD and ACS (1.9% vs 2.2%, p = 0.7). The overall MACE rate was 5.2% with an expected higher rate in patients with ACS as compared to those with stable CAD (7.3% vs 3.9%, p = 0.007). The overall bleeding event rate was 4.5%, with similar rates in stable CAD as compared to ACS patients (3.8% vs 5.6%, p = 0.3). Dual antiplatelet therapy (DAPT) interruptions prior to the recommended duration occurred in 41.7% of patients with no increase in MACE rates as compared to patients who did not prematurely interrupt DAPT (3.9% vs 6.1%, p = 0.073). Conclusions: The latest generation PF-SES is associated with low clinical event rates in these all-comers patients. There was a high rate of prematurely terminated DAPT, without any effect on MACE at 12 months. This trial is registered with NCT03809715.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Stents Farmacológicos , Sirolimo , Humanos , Síndrome Coronariana Aguda/cirurgia , Síndrome Coronariana Aguda/tratamento farmacológico , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/tratamento farmacológico , Stents Farmacológicos/efeitos adversos , Hemorragia/induzido quimicamente , Hospitais , Polímeros , Estudos Prospectivos , Sirolimo/efeitos adversos , Resultado do Tratamento , Terapia Antiplaquetária Dupla
4.
Mycologia ; 115(5): 579-601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358885

RESUMO

Neofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.


Assuntos
Ascomicetos , Biomassa , Fatores de Virulência , Polissacarídeos
5.
Int J Nanomedicine ; 18: 243-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660336

RESUMO

Purpose: This study aimed to evaluate the radiosensitizing potential of Au@DTDTPA(Gd) nanoparticles when combined with conventional external X-ray irradiation (RT) to treat GBM. Methods: Complementary biological models based on U87 spheroids including conventional 3D invasion assay, organotypic brain slice cultures, chronic cranial window model were implemented to investigate the impact of RT treatments (10 Gy single dose; 5×2 Gy or 2×5 Gy) combined with Au@DTDTPA(Gd) nanoparticles on tumor progression. The main tumor mass and its infiltrative area were analyzed. This work focused on the invading cancer cells after irradiation and their viability, aggressiveness, and recurrence potential were assessed using mitotic catastrophe quantification, MMP secretion analysis and neurosphere assays, respectively. Results: In vitro clonogenic assays showed that Au@DTDTPA(Gd) nanoparticles exerted a radiosensitizing effect on U87 cells, and in vivo experiments suggested a benefit of the combined treatment "RT 2×5 Gy + Au@DTDTPA(Gd)" compared to RT alone. Invasion assays revealed that invasion distance tended to increase after irradiation alone, while the combined treatments were able to significantly reduce tumor invasion. Monitoring of U87-GFP tumor progression using organotypic cultures or intracerebral grafts confirmed the anti-invasive effect of Au@DTDTPA(Gd) on irradiated spheroids. Most importantly, the combination of Au@DTDTPA(Gd) with irradiation drastically reduced the number, the viability and the aggressiveness of tumor cells able to escape from U87 spheroids. Notably, the combined treatments significantly reduced the proportion of escaped cells with stem-like features that could cause recurrence. Conclusion: Combining Au@DTDTPA(Gd) nanoparticles and X-ray radiotherapy appears as an attractive therapeutic strategy to decrease number, viability and aggressiveness of tumor cells that escape and can invade the surrounding brain parenchyma. Hence, Au@DTDTPA(Gd)-enhanced radiotherapy opens up interesting perspectives for glioblastoma treatment.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Humanos , Ouro/farmacologia , Glioblastoma/radioterapia , Gadolínio , Linhagem Celular Tumoral , Nanopartículas Metálicas/uso terapêutico , Meios de Contraste , Quelantes
6.
Pest Manag Sci ; 79(5): 1674-1683, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36573682

RESUMO

BACKGROUND: Grapevine trunk diseases (GTDs) are a complex group of diseases that lead to major economic losses in all wine-producing countries. The investigation of biocontrol agents (BCAs) capable of forestalling or at least minimizing the development of GTDs has, recently, become a priority. Nursery experiments were set up to (i) assess the biocontrol effect of Trichoderma atroviride (Ta) SC1 and Bacillus subtilis (Bs) PTA-271, alone and in simultaneous application, against Botryosphaeria dieback (BOT)- and black-foot (BF)- associated pathogens during the grapevine propagation process and (ii) evaluate the success of the BCA inoculation during the grapevine propagation process, using quantitative reverse-transcription polymerase chain reaction techniques. RESULTS: The results demonstrated a significant reduction in the percentage of potentially infected plants and the percentage of fungal isolation from wood fragments of BOT and BF pathogens in nursery material treated with Ta SC1 and Bs PTA-271, respectively. In one of the experiments, simultaneous treatments with Bs PTA-271 and Ta SC1 caused a reduction in percentages of potentially infected plants and fungal isolation, from wood fragments containing BOT and BF pathogens. CONCLUSION: These biological treatments may be relevant components of an integrated approach, using complementary management strategies to limit infection by GTD pathogens, but further research is still needed to elucidate the effectiveness of Bs PTA-271 and the benefits of simultaneous application with Ta SC1 for the control of GTD pathogens in nurseries. © 2022 Society of Chemical Industry.


Assuntos
Ascomicetos , Vitis , Bacillus subtilis , Vitis/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
7.
Membranes (Basel) ; 12(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207031

RESUMO

In this study, an endurance test of 3000 h was conducted on four equivalent proton exchange membrane (PEM) electrolyzers to identify and quantify the impact of an electric ripple current on their durability. Three different typical power converter waveforms and frequencies were explored. Signals were added to the same direct current carrier and also tested for reference. Performance comparison based on polarization curves and electrochemical impedance spectroscopy (EIS) analysis revealed that the ripple current favors degradation. Triangular waveform and a frequency of 10 kHz were identified as the most degrading conditions, leading to a sharp increase in high-frequency resistance (HFR) and the emergence of mass transport limitations due to the enhanced degradation of titanium mesh. Moreover, reversible losses were observed and further explorations are needed to decorrelate them from our observations.

8.
Front Microbiol ; 12: 726132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721323

RESUMO

Grapevine trunk diseases (GTDs) are a big threat for global viticulture. Without effective chemicals, biocontrol strategies are developed as alternatives to better cope with environmental concerns. A combination of biological control agents (BCAs) could even improve sustainable disease management through complementary ways of protection. In this study, we evaluated the combination of Bacillus subtilis (Bs) PTA-271 and Trichoderma atroviride (Ta) SC1 for the protection of Chardonnay and Tempranillo rootlings against Neofusicoccum parvum Bt67, an aggressive pathogen associated to Botryosphaeria dieback (BD). Indirect benefits offered by each BCA and their combination were then characterized in planta, as well as their direct benefits in vitro. Results provide evidence that (1) the cultivar contributes to the beneficial effects of Bs PTA-271 and Ta SC1 against N. parvum, and that (2) the in vitro BCA mutual antagonism switches to the strongest fungistatic effect toward Np-Bt67 in a three-way confrontation test. We also report for the first time the beneficial potential of a combination of BCA against Np-Bt67 especially in Tempranillo. Our findings highlight a common feature for both cultivars: salicylic acid (SA)-dependent defenses were strongly decreased in plants protected by the BCA, in contrast with symptomatic ones. We thus suggest that (1) the high basal expression of SA-dependent defenses in Tempranillo explains its highest susceptibility to N. parvum, and that (2) the cultivar-specific responses to the beneficial Bs PTA-271 and Ta SC1 remain to be further investigated.

9.
Cell Chem Biol ; 26(11): 1573-1585.e10, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31543461

RESUMO

Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Desenho de Fármacos , Chaperonas Moleculares/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitopos/química , Epitopos/metabolismo , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Chaperonas Moleculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Termodinâmica , Transplante Homólogo
10.
Plant J ; 100(1): 68-82, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31148338

RESUMO

The sophisticated uptake and translocation regulation of the essential element boron (B) in plants is ensured by two transmembrane transporter families: the Nodulin26-like Intrinsic Protein (NIP) and BOR transporter family. Though the agriculturally important crop Brassica napus is highly sensitive to B deficiency, and NIPs and BORs have been suggested to be responsible for B efficiency in this species, functional information of these transporter subfamilies is extremely rare. Here, we molecularly characterized the NIP and BOR1 transporter family in the European winter-type cv. Darmor-PBY018. Our transport assays in the heterologous oocyte and yeast expression systems as well as in growth complementation assays in planta demonstrated B transport activity of NIP5, NIP6, NIP7 and BOR1 isoforms. Moreover, we provided functional and quantitative evidence that also members of the NIP2, NIP3 and NIP4 groups facilitate the transport of B. A detailed B- and tissue-dependent B-transporter expression map was generated by quantitative polymerase chain reaction. We showed that NIP5 isoforms are highly upregulated under B-deficient conditions in roots, but also in shoot tissues. Moreover, we detected transcripts of several B-permeable NIPs from various groups in floral tissues that contribute to the B distribution within the highly B deficiency-sensitive flowers.


Assuntos
Antiporters/metabolismo , Boro/metabolismo , Brassica napus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Antiporters/classificação , Antiporters/genética , Aquaporinas/classificação , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico/genética , Brassica napus/classificação , Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Especificidade da Espécie
11.
Planta ; 250(1): 319-332, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030328

RESUMO

MAIN CONCLUSION: Depending on the N source and plant ontogenetic state, the epiphytic tank-forming bromeliad Vriesea gigantea can modulate aquaporin expression to maximize the absorption of the most available nitrogen source. Epiphytic bromeliads frequently present a structure formed by the overlapping of leaf bases where water and nutrients can be accumulated and absorbed, called tank. However, this structure is not present during the juvenile ontogenetic phase, leading to differences in nutrient acquisition strategies. Recent studies have shown a high capacity of the bromeliad Vriesea gigantea, an epiphytic tank-forming bromeliad, to absorb urea by their leaves. Since plant aquaporins can facilitate the diffusion of urea through the membranes, we cloned three foliar aquaporin genes, VgPIP1;1, VgPIP1;2 and VgTIP2;1 from V. gigantea plants. Through functional studies, we observed that besides water, VgTIP2;1 was capable of transporting urea while VgPIP1;2 may facilitate ammonium/ammonia diffusion. Moreover, aiming at identifying urea and ammonium-induced changes in aquaporin expression in leaves of juvenile and adult-tank plants, we showed that VgPIP1;1 and VgPIP1;2 transcripts were up-regulated in response to either urea or ammonium only in juvenile plants, while VgTIP2;1 was up-regulated in response to urea only in adult-tank plants. Thereby, an ontogenetic shift from juvenile to adult-tank-forming-plant appears to occur with metabolic changes regarding nitrogen metabolism regulation. Investigating urea metabolism in wild species that naturally cope with organic N sources, such as V. gigantea, may provide the knowledge to modify nitrogen use efficiency of crop plants.


Assuntos
Aquaporinas/metabolismo , Bromeliaceae/metabolismo , Nitrogênio/metabolismo , Ureia/metabolismo , Aquaporinas/genética , Bromeliaceae/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/metabolismo
12.
Front Plant Sci ; 9: 382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632543

RESUMO

Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for angiosperm PIP1 and PIP2 isoforms in terms of their water transport activity, trafficking, and interaction emerged already as early as in non-seed vascular plants. The existence and conservation of these characteristics may argue for the fact that PIP2s are indeed involved in the delivery of PIP1s to the plasma membrane and that the formation of functional heterotetramers is of biological relevance.

13.
Biochimie ; 137: 190-196, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385558

RESUMO

Glycoside hydrolases can be turned into thioglycoligase by mutation of the acid/base catalytic carboxylate residue. These mutants have proven valuable to generate S-glycosides, however, few examples in literature have described efficient thioglycoligase activity, and even fewer the underlying molecular mechanism. DtMan, a GH2 family ß-d-mannosidase from the thermophilic Dictyoglomus thermophilum was cloned and expressed in E. coli. The recombinant protein is highly specific for ß-d-mannosides, and exhibits efficient catalysis constants coupled to thermostability. However, seven variants bearing mutated acid/base residue could not be turned into efficient thioligases. Crystal structure of DtMan Glu425Cys mutant and molecular modeling calculations have demonstrated that unlike other GH2 thioligase reported, active site accessibility of thiol acceptor may be impaired by entrance loop rigidity. This structural feature may explain why DtMan mutants do not exhibit thioglycoligase activity.


Assuntos
Bactérias/enzimologia , Ligases/metabolismo , Mutação/genética , beta-Manosidase/química , beta-Manosidase/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Glicosilação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato , Tioglicosídeos/metabolismo , beta-Manosidase/genética
14.
mBio ; 7(1): e01781-15, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26814179

RESUMO

UNLABELLED: The Gram-positive bacterium Lactococcus lactis, used for the production of cheeses and other fermented dairy products, falls victim frequently to fortuitous infection by tailed phages. The accompanying risk of dairy fermentation failures in industrial facilities has prompted in-depth investigations of these phages. Lactococcal phage Tuc2009 possesses extensive genomic homology to phage TP901-1. However, striking differences in the baseplate-encoding genes stimulated our interest in solving the structure of this host's adhesion device. We report here the X-ray structures of phage Tuc2009 receptor binding protein (RBP) and of a "tripod" assembly of three baseplate components, BppU, BppA, and BppL (the RBP). These structures made it possible to generate a realistic atomic model of the complete Tuc2009 baseplate that consists of an 84-protein complex: 18 BppU, 12 BppA, and 54 BppL proteins. The RBP head domain possesses a different fold than those of phages p2, TP901-1, and 1358, while the so-called "stem" and "neck" domains share structural features with their equivalents in phage TP901-1. The BppA module interacts strongly with the BppU N-terminal domain. Unlike other characterized lactococcal phages, Tuc2009 baseplate harbors two different carbohydrate recognition sites: one in the bona fide RBP head domain and the other in BppA. These findings represent a major step forward in deciphering the molecular mechanism by which Tuc2009 recognizes its saccharidic receptor(s) on its host. IMPORTANCE: Understanding how siphophages infect Lactococcus lactis is of commercial importance as they cause milk fermentation failures in the dairy industry. In addition, such knowledge is crucial in a general sense in order to understand how viruses recognize their host through protein-glycan interactions. We report here the lactococcal phage Tuc2009 receptor binding protein (RBP) structure as well as that of its baseplate. The RBP head domain has a different fold than those of phages p2, TP901-1, and 1358, while the so-called "stem" and "neck" share the fold characteristics also found in the equivalent baseplate proteins of phage TP901-1. The baseplate structure contains, in contrast to other characterized lactococcal phages, two different carbohydrate binding modules that may bind different motifs of the host's surface polysaccharide.


Assuntos
Bacteriófagos/química , Metabolismo dos Carboidratos , Lactococcus lactis/virologia , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Siphoviridae/química
15.
J Proteome Res ; 14(8): 3188-203, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26112267

RESUMO

Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood.


Assuntos
Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Madeira/metabolismo , Sequência de Aminoácidos , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Gravitação , Gravitropismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Populus/genética , Proteoma/classificação , Proteoma/genética , Transdução de Sinais/genética , Madeira/genética , Xilema/genética , Xilema/metabolismo
16.
Nucleic Acids Res ; 43(3): 1905-17, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25618846

RESUMO

MCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nucleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Å resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure, but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 heteromeric complex. Thermodynamic analysis of the quaternary complex together with structural modeling support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Calorimetria , Cromatografia em Gel , Drosophila melanogaster , Humanos , Espectroscopia de Ressonância Magnética , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Difração de Raios X
17.
Nucleic Acids Res ; 42(21): 13174-85, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378334

RESUMO

Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2-Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimologia , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Replicação do DNA , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/química , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Ribonucleotídeo Redutases/análise , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
19.
J Exp Bot ; 63(11): 4291-301, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22553285

RESUMO

Trees will have to cope with increasing levels of CO(2) and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO(2) and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO(2) (800 µl l(-1)), to ozone (200 nl l(-1)) or to a combination of elevated CO(2) and ozone in controlled chambers. Lignification was analysed at different levels: biosynthesis pathway activities (enzyme and transcript), lignin content, and capacity to incorporate new assimilates by using (13)C labelling. Elevated CO(2) and ozone had opposite effects on many parameters (growth, biomass, cambial activity, wood cell wall thickness) except on lignin content which was increased by elevated CO(2) and/or ozone. However, this increased lignification was due to different response mechanisms. Under elevated CO(2), carbon supply to the stem and effective lignin synthesis were enhanced, leading to increased lignin content, although there was a reduction in the level of some enzyme and transcript involved in the lignin pathway. Ozone treatment induced a reduction in carbon supply and effective lignin synthesis as well as transcripts from all steps of the lignin pathway and some corresponding enzyme activities. However, lignin content was increased under ozone probably due to variations in other major components of the cell wall. Both mechanisms seemed to coexist under combined treatment and resulted in a high increase in lignin content.


Assuntos
Dióxido de Carbono/metabolismo , Lignina/metabolismo , Ozônio/metabolismo , Populus/metabolismo , Madeira/metabolismo , Populus/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento
20.
Planta ; 236(2): 727-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526501

RESUMO

Ozone induces a stimulation of the phenylpropanoid and lignin biosynthesis pathways in leaves but the response of wood, the main lignin-producing tissue, is not well documented. The purpose of this study was to compare the responses of phenylpropanoid and lignin pathways in leaves and stem wood by a simultaneous analysis of both organs. Young poplars (Populus tremula×alba) were subjected either to daylight ozone (200 nL L(-1) during light period) or continuous ozone (200 nL L(-1) during light and dark periods) in controlled chambers. The trees were tilted so as to limit the formation of tension wood to the upper side of the stem and that of opposite wood to the lower side. Continuous ozone fumigation induced more pronounced effects in leaves than daylight ozone. Tension wood and opposite wood displayed similar responses to ozone. Enzyme activities involved in phenylpropanoid and lignin biosynthesis increased in the leaves of ozone-treated poplars and decreased in the wood. All steps involved in phenylpropanoid and monolignol synthesis in leaves and stem wood, were also altered at the transcript level (except coniferyl aldehyde 5-hydroxylase in leaves) suggesting that the responses were tightly coordinated. The response occurred rapidly in the leaves and much later in the wood. Phenylpropanoid and lignin biosynthesis is probably first involved in a defensive role against ozone in the leaves, which would lead to considerable rerouting of the carbon skeletons. The later response of phenylpropanoid and lignin metabolism in wood seemed to result from readjustment to the reduced carbon supply.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Ozônio/farmacologia , Folhas de Planta/fisiologia , Populus/fisiologia , Propanóis/metabolismo , Madeira/fisiologia , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Lignina/análise , Lignina/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento , Populus/efeitos da radiação , Propanóis/análise , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Madeira/efeitos dos fármacos , Madeira/crescimento & desenvolvimento , Madeira/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA