Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Toxicol Mech Methods ; 31(4): 293-307, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33588685

RESUMO

Phosgene is a gas crucial to industrial chemical processes with widespread production (∼1 million tons/year in the USA, 8.5 million tons/year worldwide). Phosgene's high toxicity and physical properties resulted in its use as a chemical warfare agent during the First World War with a designation of CG ('Choky Gas'). The industrial availability of phosgene makes it a compound of concern as a weapon of mass destruction by terrorist organizations. The hydrophobicity of phosgene exacerbates its toxicity often resulting in a delayed toxidrome as the upper airways are moderately irritated; by the time symptoms appear, significant damage has occurred. As the standard of care for phosgene intoxication is supportive therapy, a pressing need for effective therapeutics and treatment regimens exists. Proposed toxicity mechanisms for phosgene based on human and animal exposures are discussed. Whereas intermediary components in the phosgene intoxication pathways are under continued discussion, generation of reactive oxygen species and oxidative stress is a common factor. As animal models are required for the study of phosgene and for FDA approval via the Animal Rule; the status of existing models and their adherence to Haber's Rule is discussed. Finally, we review the continued search for efficacious therapeutics for phosgene intoxication; and present a rapid post-exposure response that places exogenous human heat shock protein 72, in the form of a cell-penetrating fusion protein (Fv-HSP72), into lung tissues to combat apoptosis resulting from oxidative stress. Despite significant progress, additional work is required to advance effective therapeutics for acute phosgene exposure.


Assuntos
Contramedidas Médicas , Animais , Substâncias para a Guerra Química/toxicidade , Humanos , Pulmão/efeitos dos fármacos , Modelos Animais , Fosgênio/toxicidade
2.
Toxicol Mech Methods ; 29(8): 604-615, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31237465

RESUMO

Phosgene is classified as a chemical warfare agent, yet data on its short-duration high concentration toxicity in a nose-only exposure rat model is sparse and inconsistent. Hence, an exposure system for short-term/high concentration exposure was developed and characterized. Herein, we report the median lethal concentration (LC50) for a 10-min nasal exposure of phosgene in a 24-h rat survival model. Male Wistar rats (Envigo) weighing 180-210 g on the day of exposure, were exposed to phosgene gas via nose-only inhalation using a system specifically designed to allow the simultaneous exposure and quantification of phosgene. After 24 h, the surviving rats were euthanized, the lung/body mass ratio determined, and lung tissues analyzed for histopathology. Increased terminal airway edema in the lungs located primarily at the alveoli (resulting in an increased lung/body mass ratio) coincided with the observed mortality. An LC50 value of 129.2 mg/m3 for a 10-min exposure was determined. Furthermore, in agreement with other highly toxic compounds, this study reveals a LC50 concentration value supportive of a nonlinear toxic load model, where the toxic load exponent is >1 (ne = 1.17). Thus, in line with other chemical warfare agents, phosgene toxicity is predicted to be more severe with short-duration, high-concentration exposures than long-duration, low-concentration exposures. This model is anticipated to be refined and developed to screen novel therapeutics against relevant short-term high concentration phosgene exposures expected from a terrorist attack, battlefield deployment, or industrial accident.


Assuntos
Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Fosgênio/toxicidade , Edema Pulmonar/induzido quimicamente , Animais , Relação Dose-Resposta a Droga , Exposição por Inalação/análise , Dose Letal Mediana , Pulmão/patologia , Masculino , Edema Pulmonar/patologia , Ratos Wistar , Análise de Sobrevida , Fatores de Tempo
3.
J Am Coll Cardiol ; 70(12): 1479-1492, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28911512

RESUMO

BACKGROUND: Although early reperfusion is the most desirable intervention after ischemic myocardial insult, it may add to damage through oxidative stress. OBJECTIVES: This study investigated the cardioprotective effects of a single intravenous dose of heat shock protein-72 (HSP72) coupled to a single-chain variable fragment (Fv) of monoclonal antibody 3E10 (3E10Fv) in a rabbit ischemia-reperfusion model. The Fv facilitates rapid transport of HSP72 into cells, even with intact membranes. METHODS: A left coronary artery occlusion (40 min) reperfusion (3 h) model was used in 31 rabbits. Of these, 12 rabbits received the fusion protein (Fv-HSP72) intravenously. The remaining 19 control rabbits received a molar equivalent of 3E10Fv alone (n = 6), HSP72 alone (n = 6), or phosphate-buffered saline (n = 7). Serial echocardiographic examinations were performed to assess left ventricular function before and after reperfusion. Micro-single-photon emission computed tomography imaging of 99mTc-labeled annexin-V was performed with micro-computed tomography scanning to characterize apoptotic damage in vivo, followed by gamma counting of the excised myocardial specimens to quantify cell death. Histopathological characterization of the myocardial tissue and sequential cardiac troponin I measurements were also undertaken. RESULTS: Myocardial annexin-V uptake was 43% lower in the area at risk (p = 0.0003) in Fv-HSP72-treated rabbits compared with control animals receiving HSP72 or 3E10Fv alone. During reperfusion, troponin I release was 42% lower and the echocardiographic left ventricular ejection fraction 27% higher in the Fv-HSP72-treated group compared with control animals. Histopathological analyses confirmed penetration of 3E10Fv-containing molecules into cardiomyocytes in vivo, and treatment with Fv-HSP72 showed fewer apoptotic nuclei compared with control rabbits. CONCLUSIONS: Single-dose administration of Fv-HSP72 fusion protein at the time of reperfusion reduced myocardial apoptosis by almost one-half and improved left ventricular functional recovery after myocardial ischemia-reperfusion injury in rabbits. It might have potential to serve as an adjunct to early reperfusion in the management of myocardial infarction.


Assuntos
Proteínas de Choque Térmico HSP72/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Anticorpos de Cadeia Única/administração & dosagem , Animais , Modelos Animais de Doenças , Ecocardiografia , Masculino , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Coelhos
4.
Ann N Y Acad Sci ; 1374(1): 78-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27152638

RESUMO

Heat shock protein 72 (HSP72) is perhaps the most important member of the HSP70 family of proteins, given that it is induced in a wide variety of tissues and cells to combat stress, particularly oxidative stress. Here, we review independent observations of the critical role this protein plays as a pulmonary cytoprotectant and discuss the merits of developing HSP72 as a therapeutic for rapid delivery to cells and tissues after a traumatic event. We also discuss the fusion of HSP72 to a cell-penetrating single-chain Fv antibody fragment derived from mAb 3E10, referred to as Fv-HSP70. This fusion construct has been validated in vivo in a cerebral infarction model and is currently in testing as a clinical therapeutic to treat ischemic events and as a fieldable medical countermeasure to treat inhalation of toxicants caused by terrorist actions or industrial accidents.


Assuntos
Citoproteção , Proteínas de Choque Térmico HSP72/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Terapia de Alvo Molecular , Animais , Proteínas de Choque Térmico HSP72/genética , Humanos , Modelos Biológicos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA