Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 151(6): 3626, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778202

RESUMO

Topological systems furnish a powerful way of localizing wave energy at edges of a structured material. Usually, this relies on Bragg scattering to obtain bandgaps with nontrivial topological structures. However, this limits their applicability to low frequencies because that would require very large structures. A standard approach to address the problem is to add resonating elements inside the material to open gaps in the subwavelength regime. Unfortunately, generally, one has no precise control on the properties of the obtained topological modes, such as their frequency or localization length. In this work, a unique construction is proposed to couple acoustic resonators such that acoustic modes are mapped exactly to the eigenmodes of the Su-Schrieffer-Heeger (SSH) model. The relation between energy in the lattice model and the acoustic frequency is controlled by the characteristics of the resonators. In this way, SSH topological modes are obtained at any given frequency, for instance, in the subwavelength regime. The construction is also generalized to obtain well-controlled topological edge modes in alternative tunable configurations.

2.
Nat Commun ; 10(1): 3292, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337755

RESUMO

Systems capable of breaking wave transmission reciprocity have recently led to tremendous developments in wave physics. We report herein on a concept that enables one-way transmission of ultrasounds, an acoustic diode, by relying on the radiation pressure effect. This effect makes it possible to reconfigure a multilayer system by significantly deforming a water-air interface. Such a reconfiguration is then used to achieve an efficient acoustic transmission in a specified direction of propagation but not in the opposite, hence resulting in a highly nonreciprocal transmission. The corresponding concept is experimentally demonstrated using an aluminum-water-air-aluminum multilayer system, providing the means to overcome key limitations of current nonreciprocal acoustic devices. We also demonstrate that this diode functionality can even be extended to the design and operations of an acoustic switch, thus paving the way for new wave control possibilities, such as those based on acoustic transistors, phonon computing and amplitude-dependent filters.

3.
Phys Rev E ; 96(2-1): 022214, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950557

RESUMO

We study analytically and numerically envelope solitons (bright and gap solitons) in a one-dimensional, nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, leads to a nonlinear, dispersive, and dissipative wave equation. Applying the multiple scales perturbation method, we derive an effective lossy nonlinear Schrödinger equation and obtain analytical expressions for bright and gap solitons. We also perform direct numerical simulations to study the dissipation-induced dynamics of the bright and gap solitons. Numerical and analytical results, relying on the analytical approximations and perturbation theory for solions, are found to be in good agreement.

4.
Phys Rev Lett ; 115(23): 234301, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684119

RESUMO

This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 10^{6}, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

5.
J Acoust Soc Am ; 135(1): 74-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24437747

RESUMO

Urban courtyards can be regarded as open cavities in the urban area, in which resonances can be excited by waves generated in the neighboring streets. The aim of the present work is to experimentally and numerically investigate low frequency resonance phenomena in these configurations. Experiments are carried out in a scale model and a numerical study is performed with a coupled modal-finite elements method. The method enables the three-dimensional modeling of the acoustic field and thus to take into account the interactions between the courtyard and the street canyon that occur above the roof level, a particular characteristic of wave propagation in urban areas. The attention is focused on two aspects, the amplification of the sound level inside the courtyard and the acoustic attenuation in the street due to resonances. Experimental and numerical results are in good agreement and show a strong resonant behavior of these configurations.


Assuntos
Acústica , Meio Ambiente , Monitoramento Ambiental/métodos , Ruído , População Urbana , Simulação por Computador , Análise de Elementos Finitos , Humanos , Modelos Teóricos , Movimento (Física) , Análise Numérica Assistida por Computador , Pressão , Espectrografia do Som , Fatores de Tempo , Vibração
6.
J Acoust Soc Am ; 132(4): 2816-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039547

RESUMO

The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.


Assuntos
Acústica/instrumentação , Manufaturas , Som , Anisotropia , Simulação por Computador , Elasticidade , Desenho de Equipamento , Modelos Teóricos , Análise Numérica Assistida por Computador , Pressão , Rotação , Espalhamento de Radiação , Fatores de Tempo , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA