RESUMO
Tumors located in the spinal cord and its coverings can be diagnostically challenging and require special consideration regarding treatment options. During the last decade, important advances regarding the molecular characterization of central and peripheral nervous system tumors were achieved, resulting in improved diagnostic precision, and understanding of the tumor spectrum of this compartment. In particular, array-based global DNA methylation profiling has emerged as a valuable tool to delineate biologically and clinically relevant tumor subgroups and has been incorporated in the current WHO classification for central nervous system tumors of 2021. In addition, several genetic drivers have been described, which may also help to define distinct tumor types and subtypes. Importantly, the current molecular understanding not only sharpens diagnostic precision but also provides the opportunity to investigate both targeted therapies as well as risk-adapted changes in treatment intensity. Here, we discuss the current knowledge and the clinical relevance of molecular neuropathology in spinal tumor entities.
RESUMO
The diagnosis of pituitary microprolactinomas is often obscured by relatively low levels of elevated prolactin compared to macroprolactinomas. This may lead to varying patterns of medical therapy versus observation. We sought to correlate prolactin levels in suspected microprolactinomas with tumor volumes and clinical outcomes. This was a multicenter retrospective study of patients with pituitary microadenomas with baseline prolactin levels > 18ng/ml for males and > 30ng/ml for females. A linear-mixed model was used to depict changes in tumor volume over time. There were 65 patients with a mean tumor volume of 95.9mm3 and mean prolactin level of 59.4ng/ml. There were significantly higher prolactin levels in patients with tumors above the mean volume versus below (74.0 versus 53.4ng/ml, p = 0.027). 26 patients were observed, 31 were treated with anti-dopaminergic therapy, and 8 had surgery. There were significantly greater baseline prolactin levels for patients who were treated surgically (mean 86.4ng/ml) than those treated medically (mean 61.7 g/ml) or observed (mean 48.5ng/ml) (p = 0.02). Among the 26 patients who were surveilled, 13 patients demonstrated spontaneous tumor shrinkage, 12 remained stable, and 1 patient's tumor grew but was lost to follow-up. Linear mixed modeling demonstrated a statistically significant rate of tumor shrinkage over time of 3.67mm3/year (p = 0.03). When analyzing patients who were observed versus those requiring surgery after initially being surveilled, there were significantly greater baseline PRL/volume ratios in surgical patients versus those observed (8.1 ng/ml/mm3 versus 2.4 ng/ml/mm3, p = 0.025). Suspected microprolactinomas may demonstrate more convincingly elevated prolactin levels when measuring over 95.9mm3. Tumors with baseline prolactin levels over 50ng/ml may be more inclined to undergo medical treatment. In tumors with levels below 50ng/ml, it may be reasonable to undergo surveillance as these tumors tend to spontaneously shrink over time. In tumors that are surveilled, an elevated baseline PRL/volume ratio of > 8 ng/ml/mm3 may be indicate serial tumor growth that may necessitate medical and/or surgical intervention.
Assuntos
Neoplasias Hipofisárias , Prolactina , Prolactinoma , Carga Tumoral , Humanos , Feminino , Prolactinoma/cirurgia , Prolactinoma/patologia , Masculino , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/cirurgia , Adulto , Pessoa de Meia-Idade , Prolactina/sangue , Estudos Retrospectivos , Resultado do Tratamento , Idoso , Adulto JovemRESUMO
BACKGROUND: Ependymoma (EPN) is not a uniform disease but represents different disease types with biological and clinical heterogeneity. However, the pattern of when and where different types of EPN relapse is not yet comprehensively described. METHODS: We assembled 269 relapsed intracranial EPN from pediatric (n=233) and adult (n=36) patients from European and Northern American cohorts and correlated DNA methylation patterns and copy-number alterations with clinical information. RESULTS: The cohort comprised the following molecular EPN types: PF-EPN-A (n=177), ST-EPN-ZFTA (n=45), PF-EPN-B (n=31), PF-EPN-SE (n=12), and ST-EPN-YAP (n=4). First relapses of PF-EPN-B (PF: posterior-fossa) and PF-EPN-SE (SE: subependymoma) occurred later than of PF-EPN-A, ST-EPN-YAP (ST: supratentorial), or ST-EPN-ZFTA (median time to relapse: 4.3 and 6.0 years vs. 1.9/1.0/2.4 years; p<0.01). Metastatic or combined recurrences in PF-EPN-B and -A more often involved the spinal cord than in ST-EPN-ZFTA (72.7% and 40.0 vs. 12.5%; p<0.01). No distant relapses were observed in ST-EPN-YAP (n=4) or PF-EPN-SE (n=12). Post-relapse survival (PRS) was poor for PF-EPN-A and ST-EPN-ZFTA (5-year PRS: 44.5±4.4/47.8±9.1%), whereas PF-EPN-B and PF-EPN-SE displayed a 5-year PRS of 89.5±7.1/90.0±9.5% (p=0.03). However, 10-year PRS for PF-EPN-B dropped to 45.8±17.3%. Neither between radiation field and relapse pattern nor between radiation field and spinal involvement at relapse an impact was identified. Notably, all patients with relapsed ST-EPN-YAP did not receive upfront radiotherapy, but were successfully salvaged using irradiation at relapse. CONCLUSIONS: Relapse patterns of specific EPN types are different. Future clinical trials, treatment adaptions, duration of surveillance and diagnostics should be planned incorporating entity-specific relapse information.
RESUMO
Background: Infrared (IR) spectroscopy allows intraoperative, optical brain tumor diagnosis. Here, we explored it as a translational technology for the identification of aggressive meningioma types according to both, the WHO CNS grading system and the methylation classes (MC). Methods: Frozen sections of 47 meningioma were examined by IR spectroscopic imaging and different classification approaches were compared to discern samples according to WHO grade or MC. Results: IR spectroscopic differences were more pronounced between WHO grade 2 and 3 than between MC intermediate and MC malignant, although similar spectral ranges were affected. Aggressive types of meningioma exhibited reduced bands of carbohydrates (at 1024 cm-1) and nucleic acids (at 1080 cm-1), along with increased bands of phospholipids (at 1240 and 1450 cm-1). While linear discriminant analysis was able to discern spectra of WHO grade 2 and 3 meningiomas (AUC 0.89), it failed for MC (AUC 0.66). However, neural network classifiers were effective for classification according to both WHO grade (AUC 0.91) and MC (AUC 0.83), resulting in the correct classification of 20/23 meningiomas of the test set. Conclusions: IR spectroscopy proved capable of extracting information about the malignancy of meningiomas, not only according to the WHO grade, but also for a diagnostic system based on molecular tumor characteristics. In future clinical use, physicians could assess the goodness of the classification by considering classification probabilities and cross-measurement validation. This might enhance the overall accuracy and clinical utility, reinforcing the potential of IR spectroscopy in advancing precision medicine for meningioma characterization.
RESUMO
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Doenças Neurodegenerativas , Humanos , Proteína ADAM10/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Proteínas Priônicas/metabolismo , Proteínas de Membrana/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , AnticorposRESUMO
OBJECTIVE: Disparities in the epidemiology and growth rates of aneurysms between the sexes are known. However, little is known about sex-dependent outcomes after microsurgical clipping of unruptured intracranial aneurysms (UIAs). The aim of this study was to examine sex differences in characteristics and outcomes after microsurgical clipping of UIAs and to perform a propensity score-matched analysis using an international multicenter cohort. METHODS: This retrospective cohort study involved the participation of 15 centers spanning four continents. It included adult patients who underwent clipping of UIAs between January 2016 and December 2020. Patients were stratified according to their sex and analyzed for differences in morbidities and aneurysm characteristics. Based on this stratification, female patients were matched to male patients in a 1:1 ratio with a caliper width of 0.1 using propensity score matching. Endpoints included postoperative complications, neurological performance, and aneurysm occlusion at discharge and 24 months after clip placement. RESULTS: A total of 2245 patients with a mean age of 57.3 (range 20-87) years were included. Of these patients, 1675 (74.6%) were female. Female patients were significantly older (mean 57.6 vs 56.4 years, p = 0.03) but had fewer comorbidities. Aneurysms of the internal carotid artery (7.1% vs 4.2%), posterior communicating artery (6.9% vs 1.9%), and ophthalmic artery (6.0% vs 2.8%) were more commonly treated surgically in females, while clipping of aneurysms of the anterior communicating artery was more frequent in males (17.0% vs 25.3%; all p < 0.001). After propensity score matching, female patients were found to have had significantly fewer pulmonary complications (1.4% vs 4.2%, p = 0.01). However, general morbidity (24.5% vs 25.2%, p = 0.72) and mortality (0.5% vs 1.1%, p = 0.34), as well as neurological performance (p = 0.58), were comparable at discharge in both sexes. Lastly, rates of aneurysm occlusion at the time of discharge (95.5% vs 94.9%, p = 0.71) and 24 months after surgery (93.8% vs 96.1%, p = 0.22) did not significantly differ between male and female patients. CONCLUSIONS: Despite overall differences between male and female patients in demographics, comorbidities, and treated aneurysm location, sex did not relevantly affect surgical performance or perioperative complication rates.
RESUMO
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Assuntos
Neoplasias Encefálicas , Epigênese Genética , Glioma , Humanos , Prognóstico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Animais , Camundongos , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/metabolismo , Adulto , Análise de Célula Única , Linhagem Celular Tumoral , Transcriptoma , Gradação de TumoresRESUMO
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/terapia , Meningioma/patologia , Meningioma/diagnóstico , Meningioma/classificação , Neoplasias Meníngeas/terapia , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/classificação , Consenso , Biomarcadores TumoraisRESUMO
BACKGROUND: Extracellular vesicles (EVs) obtained by noninvasive liquid biopsy from patient blood can serve as biomarkers. Here, we investigated the potential of circulating plasma EVs to serve as an indicator in the diagnosis, prognosis, and treatment response of glioblastoma patients. METHODS: Plasma samples were collected from glioblastoma patients at multiple timepoints before and after surgery. EV concentrations were measured by nanoparticle tracking analysis and imaging flow cytometry. Tumor burden and edema were quantified by 3D reconstruction. EVs and tumors were further monitored in glioma-bearing mice. RESULTS: Glioblastoma patients displayed a 5.5-fold increase in circulating EVs compared to healthy donors (Pâ <â .0001). Patients with higher EV levels had significantly shorter overall survival and progression-free survival than patients with lower levels, and the plasma EV concentration was an independent prognostic parameter for overall survival. EV levels correlated with the extent of peritumoral fluid-attenuated inversion recovery hyperintensity but not with the size of the contrast-enhancing tumor, and similar findings were obtained in mice. Postoperatively, EV concentrations decreased rapidly back to normal levels, and the magnitude of the decline was associated with the extent of tumor resection. EV levels remained low during stable disease, but increased again upon tumor recurrence. In some patients, EV resurgence preceded the magnetic resonance imaging detectability of tumor relapse. CONCLUSIONS: Our findings suggest that leakiness of the blood-brain barrier may primarily be responsible for the high circulating EV concentrations in glioblastoma patients. Elevated EVs reflect tumor presence, and their quantification may thus be valuable in assessing disease activity.
Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioblastoma/sangue , Glioblastoma/diagnóstico , Glioblastoma/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Animais , Biomarcadores Tumorais/sangue , Camundongos , Prognóstico , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Taxa de Sobrevida , Adulto , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Biópsia Líquida/métodosRESUMO
BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.
Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Estudos Prospectivos , Biópsia Líquida , Biomarcadores , Vesículas Extracelulares/patologiaRESUMO
[This corrects the article DOI: 10.1055/s-0044-1779888.].
RESUMO
OBJECTIVE: Benchmarking has been proposed to reflect surgical quality and represents the highest standard reference values for desirable results. We sought to determine benchmark outcomes in patients after surgery for drug-resistant mesial temporal lobe epilepsy (MTLE). METHODS: This retrospective multicenter study included patients who underwent MTLE surgery at 19 expert centers on five continents. Benchmarks were defined for 15 endpoints covering surgery and epilepsy outcome at discharge, 1 year after surgery, and the last available follow-up. Patients were risk-stratified by applying outcome-relevant comorbidities, and benchmarks were calculated for low-risk ("benchmark") cases. Respective measures were derived from the median value at each center, and the 75th percentile was considered the benchmark cutoff. RESULTS: A total of 1119 patients with a mean age (range) of 36.7 (1-74) years and a male-to-female ratio of 1:1.1 were included. Most patients (59.2%) underwent anterior temporal lobe resection with amygdalohippocampectomy. The overall rate of complications or neurological deficits was 14.4%, with no in-hospital death. After risk stratification, 377 (33.7%) benchmark cases of 1119 patients were identified, representing 13.6%-72.9% of cases per center and leaving 742 patients in the high-risk cohort. Benchmark cutoffs for any complication, clinically apparent stroke, and reoperation rate at discharge were ≤24.6%, ≤.5%, and ≤3.9%, respectively. A favorable seizure outcome (defined as International League Against Epilepsy class I and II) was reached in 83.6% at 1 year and 79.0% at the last follow-up in benchmark cases, leading to benchmark cutoffs of ≥75.2% (1-year follow-up) and ≥69.5% (mean follow-up of 39.0 months). SIGNIFICANCE: This study presents internationally applicable benchmark outcomes for the efficacy and safety of MTLE surgery. It may allow for comparison between centers, patient registries, and novel surgical and interventional techniques.
Assuntos
Benchmarking , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/cirurgia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Estudos Retrospectivos , Idoso , Resultado do Tratamento , Criança , Pré-Escolar , Lactente , Complicações Pós-Operatórias/epidemiologia , Procedimentos Neurocirúrgicos/normas , Procedimentos Neurocirúrgicos/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Lobectomia Temporal Anterior/métodosRESUMO
Bioactive material concepts for targeted therapy have been an important research focus in regenerative medicine for years. The aim of this study was to investigate a proof-of-concept composite structure in the form of a membrane made of natural silk fibroin (SF) and extracellular vesicles (EVs) from gingival fibroblasts. EVs have multiple abilities to act on their target cell and can thus play crucial roles in both physiology and regeneration. This study used pH neutral, degradable SF-based membranes, which have excellent cell- and tissue-specific properties, as the carrier material. The characterization of the vesicles showed a size range between 120 and 180 nm and a high expression of the usual EV markers (e.g. CD9, CD63 and CD81), measured by nanoparticle tracking analysis (NTA) and single-EV flow analysis (IFCM). An initial integration of the EVs into the membrane was analyzed using scanning and transmission electron microscopy (SEM and TEM) and vesicles were successfully detected, even if they were not homogeneously distributed in the membrane. Using direct and indirect tests, the cytocompatibility of the membranes with and without EVs could be proven and showed significant differences compared to the toxic control (p < 0.05). Additionally, proliferation of L929 cells was increased on membranes functionalized with EVs (p > 0.05).
Assuntos
Vesículas Extracelulares , Fibroínas , Nanopartículas , Fibroínas/metabolismo , Vesículas Extracelulares/metabolismo , Membranas , Nanopartículas/química , FibroblastosRESUMO
Pituitary neuroendocrine tumors (PitNETs) are classified according to cell lineage, which requires immunohistochemistry for adenohypophyseal hormones and the transcription factors (TFs) PIT1, SF1, and TPIT. According to the current WHO 2022 classification, PitNETs with co-expression of multiple TFs are termed "plurihormonal". Previously, PIT1/SF1 co-expression was prevailingly reported in PitNETs, which otherwise correspond to the somatotroph lineage. However, little is known about such tumors and the WHO classification has not recognized their significance. We compiled an in-house case series of 100 tumors, previously diagnosed as somatotroph PitNETs. Following TF staining, histopathological features associated with PIT1/SF1 co-expression were assessed. Integration of in-house and publicly available sample data allowed for a meta-analysis of SF1-associated clinicopathological and molecular features across a total of 270 somatotroph PitNETs. The majority (74%, 52/70) of our densely granulated somatotroph PitNETs (DGST) unequivocally co-expressed PIT1 and SF1 (DGST-PIT1/SF1). None (0%, 0/30) of our sparsely granulated somatotroph PitNETs (SGST) stained positive for SF1 (SGST-PIT1). Among DGST, PIT1/SF1 co-expression was significantly associated with scarce FSH/LH expression and fewer fibrous bodies compared to DGST-PIT1. Integrated molecular analyses including publicly available samples confirmed that DGST-PIT1/SF1, DGST-PIT1 and SGST-PIT1 represent distinct tumor subtypes. Clinicopathological meta-analyses indicated that DGST-PIT1 respond more favorably towards treatment with somatostatin analogs compared to DGST-PIT1/SF1, while both these subtypes show an overall less aggressive clinical course than SGST-PIT1. In this study, we spotlight that DGST with co-expression of PIT1 and SF1 represent a common, yet underrecognized, distinct PitNET subtype. Our study questions the rationale of generally classifying such tumors as "plurihormonal", and calls for a refinement of the WHO classification. We propose the term "somatogonadotroph PitNET".
Assuntos
Adenoma , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Linhagem da Célula , Tumores Neuroendócrinos/genética , Neoplasias Hipofisárias/genética , Fatores de Transcrição , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismoRESUMO
The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Metilação de DNA , Recidiva Local de Neoplasia/genética , Análise de SobrevidaRESUMO
DNA methylation analysis has become a powerful tool in neuropathology. Although DNA methylation-based classification usually shows high accuracy, certain samples cannot be classified and remain clinically challenging. We aimed to gain insight into these cases from a clinical perspective. To address, central nervous system (CNS) tumors were subjected to DNA methylation profiling and classified according to their calibrated score using the DKFZ brain tumor classifier (V11.4) as "≥ 0.84" (score ≥ 0.84), "0.3-0.84" (score 0.3-0.84), or "< 0.3" (score < 0.3). Histopathology, patient characteristics, DNA input amount, and tumor purity were correlated. Clinical outcome parameters were time to treatment decision, progression-free, and overall survival. In 1481 patients, the classifier identified 69 (4.6%) tumors with an unreliable score as "< 0.3". Younger age (P < 0.01) and lower tumor purity (P < 0.01) compromised accurate classification. A clinical impact was demonstrated as unclassifiable cases ("< 0.3") had a longer time to treatment decision (P < 0.0001). In a subset of glioblastomas, these cases experienced an increased time to adjuvant treatment start (P < 0.001) and unfavorable survival (P < 0.025). Although DNA methylation profiling adds an important contribution to CNS tumor diagnostics, clinicians should be aware of a potentially longer time to treatment initiation, especially in malignant brain tumors.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Humanos , Metilação de DNA , Prognóstico , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologiaRESUMO
BACKGROUND AND OBJECTIVES: Microsurgical aneurysm repair by clipping continues to be highly important despite increasing endovascular treatment options, especially because of inferior occlusion rates. This study aimed to present current global microsurgical treatment practices and to identify risk factors for complications and neurological deterioration after clipping of unruptured anterior circulation aneurysms. METHODS: Fifteen centers from 4 continents participated in this retrospective cohort study. Consecutive patients who underwent elective microsurgical clipping of untreated unruptured intracranial aneurysm between January 2016 and December 2020 were included. Posterior circulation aneurysms were excluded. Outcome parameters were postsurgical complications and neurological deterioration (defined as decline on the modified Rankin Scale) at discharge and during follow-up. Multivariate regression analyses were performed adjusting for all described patient characteristics. RESULTS: Among a total of 2192 patients with anterior circulation aneurysm, complete occlusion of the treated aneurysm was achieved in 2089 (95.3%) patients at discharge. The occlusion rate remained stable (94.7%) during follow-up. Regression analysis identified hypertension (P < .02), aneurysm diameter (P < .001), neck diameter (P < .05), calcification (P < .01), and morphology (P = .002) as preexisting risk factors for postsurgical complications and neurological deterioration at discharge. Furthermore, intraoperative aneurysm rupture (odds ratio 2.863 [CI 1.606-5.104]; P < .01) and simultaneous clipping of more than 1 aneurysm (odds ratio 1.738 [CI 1.186-2.545]; P < .01) were shown to be associated with an increased risk of postsurgical complications. Yet, none of the surgical-related parameters had an impact on neurological deterioration. Analyzing volume-outcome relationship revealed comparable complication rates (P = .61) among all 15 participating centers. CONCLUSION: Our international, multicenter analysis presents current microsurgical treatment practices in patients with anterior circulation aneurysms and identifies preexisting and surgery-related risk factors for postoperative complications and neurological deterioration. These findings may assist in decision-making for the optimal therapeutic regimen of unruptured anterior circulation aneurysms.
RESUMO
BACKGROUND: Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS: PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION: This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION: EU-CT number: 2023-503938-52-00 30.11.2023.
Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Convulsões/tratamento farmacológico , Nitrilas/uso terapêutico , Piridonas/uso terapêutico , Resultado do Tratamento , Método Duplo-CegoRESUMO
BACKGROUND: The IDH-wildtype glioblastoma (GBM) patients have a devastating prognosis. Here, we analyzed the potential prognostic value of global DNA methylation of the tumors. METHODS: DNA methylation of 492 primary samples and 31 relapsed samples, each treated with combination therapy, and of 148 primary samples treated with radiation alone were compared with patient survival. We determined the mean methylation values and estimated the immune cell infiltration from the methylation data. Moreover, the mean global DNA methylation of 23 GBM cell lines was profiled and correlated to their cellular radiosensitivity as measured by colony formation assay. RESULTS: High mean DNA methylation levels correlated with improved survival, which was independent from known risk factors (MGMT promoter methylation, age, extent of resection; Pâ =â 0.009) and methylation subgroups. Notably, this correlation was also independent of immune cell infiltration, as higher number of immune cells indeed was associated with significantly better OS but lower mean methylation. Radiosensitive GBM cell lines had a significantly higher mean methylation than resistant lines (Pâ =â 0.007), and improved OS of patients treated with radiotherapy alone was also associated with higher DNA methylation (Pâ =â 0.002). Furthermore, specimens of relapsed GBM revealed a significantly lower mean DNA methylation compared to the matching primary tumor samples (Pâ =â 0.041). CONCLUSIONS: Our results indicate that mean global DNA methylation is independently associated with outcome in glioblastoma. The data also suggest that a higher DNA methylation is associated with better radiotherapy response and less aggressive phenotype, both of which presumably contribute to the observed correlation with OS.