Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38712043

RESUMO

Background: Topical corticosteroids (TCS) are first-line therapies for numerous skin conditions. Topical Steroid Withdrawal (TSW) is a controversial diagnosis advocated by patients with prolonged TCS exposure who report severe systemic reactions upon treatment cessation. However, to date there have been no systematic clinical or mechanistic studies to distinguish TSW from other eczematous disorders. Methods: A re-analysis of a previous survey with eczematous skin disease was performed to evaluate potential TSW distinguishing symptoms. We subsequently conducted a pilot study of 16 patients fitting the proposed diagnostic criteria. We then performed: tissue metabolomics, transcriptomics, and immunostaining on skin biopsies; serum metabolomics and cytokine assessments; shotgun metagenomics on microbiome skin swabs; genome sequencing; followed by functional, mechanistic studies using human skin cell lines and mice. Results: Clinically distinct TSW symptoms included burning, flushing, and thermodysregulation. Metabolomics and transcriptomics both implicated elevated NAD+ oxidation stemming from increased expression of mitochondrial complex I and conversion of tryptophan into kynurenine metabolites. These abnormalities were induced by glucocorticoid exposure both in vitro and in a cohort of healthy controls (N=19) exposed to TCS. Targeting complex I via either metformin or the herbal compound berberine improved outcomes in both cell culture and in an open-label case series for patients with TSW. Conclusion: Taken together, our results suggest that TSW has a distinct dermatopathology. While future studies are needed to validate these results in larger cohorts, this work provides the first mechanistic evaluation into TSW pathology, and offers insights into clinical identification, pharmacogenomic candidates, and directed therapeutic strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38252532

RESUMO

Background: The taxonomic status of the relapsing fever spirochete Borrelia hermsii in western North America was established in 1942 and based solely on its specific association with the soft tick vector Ornithodoros hermsi. Multilocus sequence typing (MLST) of the 16S rRNA, flaB, gyrB, glpQ, and 16S-23S rRNA intergenic spacer of B. hermsii isolates collected over many years from various geographic locations and biological sources identified two distinct clades designated previously as B. hermsii Genomic Group I (GGI) and Genomic Group II (GGII). To better assess the taxonomic relationship of these two genomic groups to each other and other species of Borrelia, DNA sequences of the entire linear chromosome were determined. Materials and Methods: Genomic DNA samples were prepared from 11 spirochete isolates grown in Barbour-Stoenner-Kelly-H medium. From these preparations, DNA sequences of the entire linear chromosome of two isolates of B. hermsii belonging to each genomic group and seven additional species were determined. Results: Chromosomal sequences of four isolates of B. hermsii contained 919,212 to 922,307 base pairs. DNA sequence identities between the two genomic groups of B. hermsii were 95.86-95.99%, which were more divergent than chromosomal sequences comparing Borrelia parkeri and Borrelia turicatae (97.13%), Borrelia recurrentis and Borrelia duttonii (97.07%), and Borrelia crocidurae and B. duttonii (97.09%). The 3' end of the chromosome of the two GGII isolates also contained a unique intact oppA gene absent from all other species examined. Conclusion: Previous MLST and the chromosomal sequences presented herein support the division of the B. hermsii species complex into two species, B. hermsii sensu stricto ( = GGI) and Borrelia nietonii sp. nov. ( = GGII). We name this unique relapsing fever spirochete in honor of our late friend and colleague Dr. Nathan Nieto for his outstanding contributions to our understanding of tick-borne relapsing fever.

3.
Microbiol Resour Announc ; 12(11): e0052123, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847010

RESUMO

Roseomonas mucosa is associated with the normal skin microflora. Here, we present de novo sequence assemblies from R. mucosa isolates obtained from the skin lesions of three atopic dermatitis patients.

4.
Microbiol Resour Announc ; 12(11): e0052023, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37819097

RESUMO

Roseomonas mucosa is a bacterium that is found in the natural microbiota of human skin. Here, we present de novo sequence assemblies from R. mucosa isolated from the skin microflora of three healthy human volunteers that were used to treat atopic dermatitis patients.

5.
PLoS Negl Trop Dis ; 17(10): e0011657, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796973

RESUMO

Since emerging in French Polynesia and Brazil in the 2010s, Zika virus (ZIKV) has been associated with fetal congenital disease. Previous studies have compared ancestral and epidemic ZIKV strains to identify strain differences that may contribute to vertical transmission and fetal disease. However, within-host diversity in ZIKV populations during vertical transmission has not been well studied. Here, we used the established anti-interferon treated Rag1-/- mouse model of ZIKV vertical transmission to compare genomic variation within ZIKV populations in matched placentas, fetal bodies, and fetal brains via RNASeq. At early stages of vertical transmission, the ZIKV populations in the matched placentas and fetal bodies were similar. Most ZIKV single nucleotide variants were present in both tissues, indicating little to no restriction in transmission of ZIKV variants from placenta to fetus. In contrast, at later stages of fetal infection there was a sharp reduction in ZIKV diversity in fetal bodies and fetal brains. All fetal brain ZIKV populations were comprised of one of two haplotypes, containing either a single variant or three variants together, as largely homogenous populations. In most cases, the dominant haplotype present in the fetal brain was also the dominant haplotype present in the matched fetal body. However, in two of ten fetal brains the dominant ZIKV haplotype was undetectable or present at low frequencies in the matched placenta and fetal body ZIKV populations, suggesting evidence of a strict selective bottleneck and possible selection for certain variants during neuroinvasion of ZIKV into fetal brains.


Assuntos
Doenças Fetais , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Camundongos , Zika virus/genética , Placenta , Transmissão Vertical de Doenças Infecciosas , Feto , Encéfalo
6.
PLoS Pathog ; 19(8): e1011544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37595007

RESUMO

Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.


Assuntos
Infecções por Astroviridae , Encéfalo , Adulto , Humanos , Sistema Nervoso Central , Neurônios , Imunidade
7.
Emerg Microbes Infect ; 12(2): 2252513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616377

RESUMO

Infection with Marburg virus (MARV), the causative agent of Marburg virus disease (MVD), results in haemorrhagic disease and high case fatality rates (>40%) in humans. Despite its public health relevance, there are no licensed vaccines or therapeutics to prevent or treat MVD. A vesicular stomatitis virus (VSV)-based vaccine expressing the MARV glycoprotein (VSV-MARV) is currently in clinical development. Previously, a single 10 million PFU dose of VSV-MARV administered 1-5 weeks before lethal MARV challenge conferred uniform protection in nonhuman primates (NHPs), demonstrating fast-acting potential. Additionally, our group recently demonstrated that even a low dose VSV-MARV (1000 PFU) protected NHPs when given 7 days before MARV challenge. In this study, we longitudinally profiled the transcriptional responses of NHPs vaccinated with this low dose of VSV-MARV either 14 or 7 days before lethal MARV challenge. NHPs vaccinated 14 days before challenge presented with transcriptional changes consistent with an antiviral response before challenge. Limited gene expression changes were observed in the group vaccinated 7 days before challenge. After challenge, genes related to lymphocyte-mediated immunity were only observed in the group vaccinated 14 days before challenge, indicating that the length of time between vaccination and challenge influenced gene expression. Our results indicate that a low dose VSV-MARV elicits distinct immune responses that correlate with protection against MVD. A low dose of VSV-MARV should be evaluated in clinical rails as it may be an option to deliver beneficial public health outcomes to more people in the event of future outbreaks.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Marburgvirus/genética , Vacinação , Surtos de Doenças , Doença do Vírus de Marburg/prevenção & controle , Imunidade
8.
PLoS Pathog ; 19(7): e1011527, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37523399

RESUMO

Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a ß-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be surface exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.


Assuntos
Rickettsia rickettsii , Sistemas de Secreção Tipo V , Rickettsia rickettsii/genética , Sistemas de Secreção Tipo V/genética , Peptídeo Hidrolases , Proteínas da Membrana Bacteriana Externa , Fatores de Virulência
9.
J Infect Dis ; 228(Suppl 7): S498-S507, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37348869

RESUMO

RNA editing has been discovered as an essential mechanism for the transcription of the glycoprotein (GP) gene of Ebola virus but not Marburg virus. We developed a rapid transcript quantification assay (RTQA) to analyze RNA transcripts generated through RNA editing and used immunoblotting with a pan-ebolavirus monoclonal antibody to confirm different GP gene-derived products. RTQA successfully quantified GP gene transcripts during infection with representative members of 5 ebolavirus species. Immunoblotting verified expression of the soluble GP and the transmembrane GP. Our results defined RNA editing as a general trait of ebolaviruses. The degree of editing, however, varies among ebolaviruses with Reston virus showing the lowest and Bundibugyo virus the highest degree of editing.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Edição de RNA , Glicoproteínas , Anticorpos Antivirais , Anticorpos Monoclonais , Doença pelo Vírus Ebola/genética
10.
PLoS Pathog ; 19(3): e1011209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897929

RESUMO

CD4+ tissue resident memory T cells (TRMs) are implicated in the formation of persistent HIV reservoirs that are established during the very early stages of infection. The tissue-specific factors that direct T cells to establish tissue residency are not well defined, nor are the factors that establish viral latency. We report that costimulation via MAdCAM-1 and retinoic acid (RA), two constituents of gut tissues, together with TGF-ß, promote the differentiation of CD4+ T cells into a distinct subset α4ß7+CD69+CD103+ TRM-like cells. Among the costimulatory ligands we evaluated, MAdCAM-1 was unique in its capacity to upregulate both CCR5 and CCR9. MAdCAM-1 costimulation rendered cells susceptible to HIV infection. Differentiation of TRM-like cells was reduced by MAdCAM-1 antagonists developed to treat inflammatory bowel diseases. These finding provide a framework to better understand the contribution of CD4+ TRMs to persistent viral reservoirs and HIV pathogenesis.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Humanos , Fator de Crescimento Transformador beta , Tretinoína/farmacologia , Diferenciação Celular , Memória Imunológica , Receptores CCR5
12.
Nat Commun ; 12(1): 5868, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620866

RESUMO

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observe a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 do not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals do not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus can be detected in lungs of vaccinated animals. Histopathological evaluation shows extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração Intranasal , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , ChAdOx1 nCoV-19 , Feminino , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Mesocricetus , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
13.
Nat Commun ; 12(1): 5454, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526512

RESUMO

Chlamydia trachomatis infection causes severe inflammatory disease resulting in blindness and infertility. The pathophysiology of these diseases remains elusive but myeloid cell-associated inflammation has been implicated. Here we show NLRP3 inflammasome activation is essential for driving a macrophage-associated endometritis resulting in infertility by using a female mouse genital tract chlamydial infection model. We find the chlamydial parasitophorous vacuole protein CT135 triggers NLRP3 inflammasome activation via TLR2/MyD88 signaling as a pathogenic strategy to evade neutrophil host defense. Paradoxically, a consequence of CT135 mediated neutrophil killing results in a submucosal macrophage-associated endometritis driven by ATP/P2X7R induced NLRP3 inflammasome activation. Importantly, macrophage-associated immunopathology occurs independent of macrophage infection. We show chlamydial infection of neutrophils and epithelial cells produce elevated levels of extracellular ATP. We propose this source of ATP serves as a DAMP to activate submucosal macrophage NLRP3 inflammasome that drive damaging immunopathology. These findings offer a paradigm of sterile inflammation in infectious disease pathogenesis.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Neutrófilos/imunologia , Receptores Purinérgicos P2X7/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Chlamydia/fisiologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Modelos Animais de Doenças , Feminino , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
14.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807288

RESUMO

Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than 99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID50 equivalent per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14 camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE. The low genetic diversity detected in Jordan camels during our study is consistent with a lack of endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans dominated by nosocomial transmission following a single introduction as reported during the 2015 MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel herds in Jordan in 2016 following a single introduction event.


Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Variação Genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/virologia , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Genoma Viral , Jordânia/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Filogenia , República da Coreia/epidemiologia , Arábia Saudita/epidemiologia , Emirados Árabes Unidos/epidemiologia , Zoonoses/epidemiologia
15.
bioRxiv ; 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758847

RESUMO

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observed a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 did not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals did not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus was detected in lungs of vaccinated animals. Histopathological evaluation showed extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.

16.
Nat Med ; 26(12): 1929-1940, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106664

RESUMO

The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.


Assuntos
Infecções Assintomáticas/epidemiologia , Interações Hospedeiro-Parasita/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/patogenicidade , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Doenças Endêmicas/prevenção & controle , Eritrócitos/parasitologia , Feminino , Genótipo , Humanos , Lactente , Malária Falciparum/genética , Malária Falciparum/parasitologia , Masculino , Mali/epidemiologia , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Estações do Ano , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 115(49): 12513-12518, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455312

RESUMO

Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Aotidae , Cruzamentos Genéticos , Resistência a Medicamentos , Regulação da Expressão Gênica , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
18.
J Immunol ; 200(12): 4157-4169, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735480

RESUMO

Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-ß expression were not coupled in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.


Assuntos
Infecções por Caliciviridae/genética , Macrófagos/virologia , Transcriptoma/genética , Animais , Infecções por Caliciviridae/virologia , Ciclo Celular/genética , Linhagem Celular , Replicação do DNA/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Células RAW 264.7 , Transcrição Gênica/genética
19.
Clin Infect Dis ; 64(5): 645-653, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362910

RESUMO

Background: Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. Methods: In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Results: Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. Conclusions: These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria.


Assuntos
Malária Falciparum/epidemiologia , Plasmodium falciparum , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Infecções Assintomáticas , Criança , Pré-Escolar , Doença Crônica , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Mali/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Vigilância da População , Risco , Estações do Ano , Adulto Jovem
20.
Genome Announc ; 5(2)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082493

RESUMO

Reston virus (RESTV) was discovered in 1989-1990 during three connected epizootics of highly lethal viral hemorrhagic fever among captive macaques in primate housing facilities in the United States and Philippines. Currently, only one RESTV isolate from that outbreak (named Pennsylvania) has been sequenced. Here, we report the sequence of a second isolate, Reston virus/M.fascicularis-tc/USA/1990/Philippines89-AZ1435.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA