RESUMO
BACKGROUND: Asthma is associated with allergic sensitization in about half of all cases, and asthma phenotypes can vary by age and sex. DNA methylation in the promoter of the allergy regulatory gene interferon gamma (IFNγ) has been linked to the maintenance of allergic immune function in human cell and mouse models. We hypothesized that IFNγ promoter methylation at two well-studied, key cytosine phosphate guanine (CpG) sites (-186 and -54), may differ by age, sex, and airway versus systemic tissue in a cohort of 74 allergic asthmatics. RESULTS: After sampling buccal cells, a surrogate for airway epithelial cells, and CD4+ lymphocytes, we found that CD4+ lymphocyte methylation was significantly higher in children compared to adults at both CpG sites (P <0.01). Buccal cell methylation was significantly higher in children at CpG -186 (P = 0.03) but not CpG -54 (P = 0.66). Methylation was higher in males compared to females at both CpG sites in CD4+ lymphocytes (-186: P <0.01, -54: P = 0.02) but not buccal cells (-186: P = 0.14, -54: P = 0.60). In addition, methylation was lower in CD4+ lymphocytes compared to buccal cells (P <0.01) and neighboring CpG sites were strongly correlated in CD4+ lymphocytes (r = 0.84, P <0.01) and weakly correlated in buccal cells (r = 0.24, P = 0.04). At CpG -186, there was significant correlation between CD4+ lymphocytes and buccal cells (r = 0.24, P = 0.04) but not at CpG -54 (r = -0.03, P = 0.78). CONCLUSIONS: These findings highlight significant age, sex, and tissue-related differences in IFNγ promoter methylation that further our understanding of methylation in the allergic asthma pathway and in the application of biomarkers in clinical research.
RESUMO
Exposure to ambient metals in urban environments has been associated with wheeze, and emergency room visits and hospitalizations due to respiratory illness. However, the effect of ambient metals exposure on airway inflammation, and how these associations may be modified by seroatopy, has not been determined. Fractional exhaled nitric oxide (FENO) is a reliable proxy marker of airway inflammation. We hypothesized that recent ambient concentrations of Ni, V, Zn and Fe would be associated differentially with proximal and distal fractions of exhaled NO, and that these associations would be modified by seroatopy. As part of the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study, 9-11 year old children (n=192) were evaluated. Ambient measures of Ni, V, Zn and Fe were obtained from a local central monitoring site and averaged over 9 days based on three 24h measures every third day. Fractional exhaled nitric oxide (FENO) samples were obtained at constant flows of 50 (FENO50), 83 and 100mL/s, and used to determine surrogate measures for proximal (JNO) and alveolar (Calv) inflammation. Seroatopy was determined by specific IgE at age 7. Data were analyzed using multivariable linear regression. Ambient V and Fe concentrations were associated positively with FENO50 (p=0.018, p=0.027). Ambient Fe was associated positively with JNO (p=0.017). Ambient Ni and V concentrations were associated positively with Calv (p=0.004, p=0.018, respectively). A stronger association of Ni concentrations with Calv was observed among the children with seroatopy. These results suggest that ambient metals are associated differentially with different fractions of FENO production, and this relationship may be modified by seroatopy.
Assuntos
Metais Pesados/administração & dosagem , Metais Pesados/efeitos adversos , Óxido Nítrico/metabolismo , Administração por Inalação , Adulto , Criança , Exposição Ambiental/efeitos adversos , Feminino , Intoxicação por Metais Pesados , Humanos , Inflamação/induzido quimicamente , Modelos Lineares , Masculino , Metais Pesados/análise , Gravidez , Sistema Respiratório/efeitos dos fármacos , Adulto JovemRESUMO
BACKGROUND: Sensitization to cockroach is one of the strongest identified risk factors for greater asthma morbidity in low-income urban communities; however, the timing of exposures relevant to the development of sensitization has not been elucidated fully. Furthermore, exposure to combustion byproducts, including polycyclic aromatic hydrocarbons (PAHs), can augment the development of allergic sensitization. OBJECTIVE: We sought to test the hypotheses that domestic cockroach allergen measured prenatally would predict cockroach sensitization in early childhood and that this association would be greater for children exposed to higher PAH concentrations. METHODS: Dominican and African American pregnant women living in New York City were enrolled. In the third trimester expectant mothers wore personal air samplers for measurement of 8 nonvolatile PAHs and the semivolatile PAH pyrene, and dust was collected from homes for allergen measurement. Glutathione-S-transferase µ 1 (GSTM1) gene polymorphisms were measured in children. Allergen-specific IgE levels were measured from the children at ages 2, 3, 5, and 7 years. RESULTS: Bla g 2 in prenatal kitchen dust predicted cockroach sensitization at the ages of 5 to 7 years (adjusted relative risk [RR], 1.15; P = .001; n = 349). The association was observed only among children with greater than (RR, 1.22; P = .001) but not less than (RR, 1.07; P = .24) the median sum of 8 nonvolatile PAH levels. The association was most pronounced among children with higher PAH levels and null for the GSTM1 gene (RR, 1.54; P = .001). CONCLUSIONS: Prenatal exposure to cockroach allergen was associated with a greater risk of allergic sensitization. This risk was increased by exposure to nonvolatile PAHs, with children null for the GSTM1 mutation particularly vulnerable.