Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 188: 170-181, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196873

RESUMO

In recent decades, biotechnological drugs have emerged as relevant therapeutic tools. However, therapeutic molecules can exert their activity only if properly formulated and delivered into the body. In this regard, nano-sized drug delivery systems have been shown to provide protection, stability, and controlled release of payloads, increasing their therapeutic efficacy. In this work, a microfluidic mixing technique for the preparation of chitosan-based nanoparticles was established with the capability of easily exchanging macromolecular biological cargos such as the model protein ß-Galactosidase, mRNA, and siRNA. The nanoparticles obtained showed hydrodynamic diameters ranging from 75 nm to 105 nm, low polydispersity of 0.15 to 0.22 and positive zeta potentials of 6 mV to 17 mV. All payloads were efficiently encapsulated (>80 %) and the well-known cytocompatibility of chitosan-based nanoparticles was confirmed. Cell culture studies demonstrated increased cellular internalization of loaded nano-formulations compared to free molecules as well as successful gene silencing with nano-formulated siRNA, suggesting the ability of these nanoparticles to escape the endosome.


Assuntos
Quitosana , Nanopartículas , Microfluídica , Substâncias Macromoleculares , RNA Interferente Pequeno/genética , Tamanho da Partícula
2.
Drug Deliv Transl Res ; 13(3): 822-838, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36207657

RESUMO

Nose-to-brain delivery presents a promising alternative route compared to classical blood-brain barrier passage, especially for the delivery of high molecular weight drugs. In general, macromolecules are rapidly degraded in physiological environment. Therefore, nanoparticulate systems can be used to protect biomolecules from premature degradation. Furthermore, targeting ligands on the surface of nanoparticles are able to improve bioavailability by enhancing cellular uptake due to specific binding and longer residence time. In this work, transferrin-decorated chitosan nanoparticles are used to evaluate the passage of a model protein through the nasal epithelial barrier in vitro. It was demonstrated that strain-promoted azide-alkyne cycloaddition reaction can be utilized to attach a functional group to both transferrin and chitosan enabling a rapid covalent surface-conjugation under mild reaction conditions after chitosan nanoparticle preparation. The intactness of transferrin and its binding efficiency were confirmed via SDS-PAGE and SPR measurements. Resulting transferrin-decorated nanoparticles exhibited a size of about 110-150 nm with a positive surface potential. Nanoparticles with the highest amount of surface bound targeting ligand also displayed the highest cellular uptake into a human nasal epithelial cell line (RPMI 2650). In an air-liquid interface co-culture model with glioblastoma cells (U87), transferrin-decorated nanoparticles showed a faster passage through the epithelial cell layer as well as increased cellular uptake into glioblastoma cells. These findings demonstrate the beneficial characteristics of a specific targeting ligand. With this chemical and technological formulation concept, a variety of targeting ligands can be attached to the surface after nanoparticle formation while maintaining cargo integrity.


Assuntos
Quitosana , Glioblastoma , Nanopartículas , Humanos , Transferrina/química , Quitosana/química , Ligantes , Glioblastoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/metabolismo , Nanopartículas/química
3.
Nanoscale Adv ; 3(9): 2488-2500, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134165

RESUMO

Hollow viral vectors, such as John Cunningham virus-like particles (JC VLPs), provide a unique opportunity to deliver drug cargo into targeted cells and tissue. Current understanding of the entry of JC virus in brain cells has remained insufficient. In particular, interaction of JC VLPs with the blood-brain barrier (BBB) has not been analyzed in detail. Thus, JC VLPs were produced in this study for investigating the trafficking across the BBB. We performed a carotid artery injection procedure for mouse brain to qualitatively study JC VLPs' in vivo binding and distribution and used in vitro approaches to analyze their uptake and export kinetics in brain endothelial cells. Our results show that clathrin-dependent mechanisms contributed to the entry of VLPs into brain endothelial cells, and exocytosis or transcytosis of VLPs across the BBB was observed in vitro. VLPs were found to interact with sialic acid glycans in mouse brain endothelia. The ability of JC VLPs to cross the BBB can be useful in developing a delivery system for transport of genes and small molecule cargoes to the brain.

4.
Biochemistry ; 55(9): 1287-90, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26894260

RESUMO

Little is known about how a membrane can regulate interactions between transmembrane helices. Here, we show that strong self-interaction of the transmembrane helix of human quiescin sulfhydryl oxidase 2 rests on a motif of conserved amino acids comprising one face of the helix. Atomistic molecular dynamics simulations suggest that water molecules enter the helix-helix interface and connect serine residues of both partner helices. In addition, an interfacial tyrosine can interact with noninterfacial water or lipid. Dimerization of this transmembrane helix might therefore be controlled by membrane properties controlling water permeation and/or by the lipid composition of the membrane.


Assuntos
Sequências Hélice-Alça-Hélice/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Estrutura Secundária de Proteína
5.
Bioinformatics ; 29(13): 1623-30, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23640719

RESUMO

MOTIVATION: Most integral membrane proteins form dimeric or oligomeric complexes. Oligomerization is frequently supported by the non-covalent interaction of transmembrane helices. It is currently not clear how many high-affinity transmembrane domains (TMD) exist in a proteome and how specific their interactions are with respect to preferred contacting faces and their underlying residue motifs. RESULTS: We first identify a threshold of 55% sequence similarity, which demarcates the border between meaningful alignments of TMDs and chance alignments. Clustering the human single-span membrane proteome using this threshold groups ~40% of the TMDs. The homotypic interaction of the TMDs representing the 33 largest clusters was systematically investigated under standardized conditions. The results reveal a broad distribution of relative affinities. High relative affinity frequently coincides with (i) the existence of a preferred helix-helix interface and (ii) sequence specificity as indicated by reduced affinity after mutating conserved residues. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas de Membrana/química , Humanos , Proteínas de Membrana/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA