Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535206

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeats)-based technologies are powerful, programmable tools for site-directed genome modifications. After successful adaptation and efficient use of CRISPR-Cas9 for genome engineering in methylotrophic yeast Komagataella phaffii, a broader variety of employable endonucleases was desired to increase the experimental flexibility and to provide alternatives in case there are specific legal restrictions in industrial research due to the intellectual property rights (IPRs) of third parties. MAD7, an engineered Class 2 Type V Cas nuclease, was promoted as a royalty-free alternative for academic and industrial research and developed by Inscripta (Pleasanton, CA, USA). In this study, for the first time, CRISPR-MAD7 was used for genome editing in K. phaffii with a high gene-editing rate (up to 90%), as demonstrated for the three targeted genes coding for glycerol kinase 1 (GUT1), red fluorescence protein (DsRed), and zeocin resistance gene (Sh ble). Additionally, the genome-editing efficiencies of the CRISPR-MAD7 and CRISPR-Cas9 systems were systematically compared by targeting 259 kinase genes in K. phaffii. In this broad testing, the CRISPR-Cas9 had a higher genome-editing rate of about 65%, in comparison to the applied CRISPR-MAD7 toolbox (about 23%).

2.
J Vis Exp ; (201)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38009719

RESUMO

Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Minerais , Grão Comestível/química , Água
3.
Biochemistry ; 62(22): 3170-3172, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916429
4.
J Am Chem Soc ; 145(34): 18888-18903, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584157

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.


Assuntos
Cobre , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Cobre/química , Peróxido de Hidrogênio/metabolismo , Polissacarídeos/metabolismo , Glutamatos
5.
Methods Mol Biol ; 2617: 75-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656517

RESUMO

In this chapter, we present a bidirectional promoter library toolbox to evaluate fast and efficiently the optimal conditions for the balanced co-expression of two target genes. As a proof-of-concept, we demonstrate the co-expression of CYP505x and the GroEL/ES complex, which resulted in noticeably elevated enzyme activity with one of the de-novo-designed promoters of the library. The new toolbox offers a straightforward one-pot cloning approach and is highly modular. As such, the method presented here should be of great interest to any gene co-expression study.


Assuntos
Escherichia coli , Escherichia coli/genética , Regiões Promotoras Genéticas , Biblioteca Gênica
6.
Biochemistry ; 60(47): 3633-3643, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34738811

RESUMO

The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.


Assuntos
Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Biomassa , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Cinética , Lentinula/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Neurospora crassa/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
7.
ACS Catal ; 11(18): 11685-11695, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34567832

RESUMO

Enzymes known as lytic polysaccharide monooxygenases (LPMOs) are recognized as important contributors to aerobic enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose. LPMOs are remarkably abundant in nature, with some fungal species possessing more than 50 LPMO genes, and the biological implications of this diversity remain enigmatic. For example, chitin-active LPMOs have been encountered in biological niches where chitin conversion does not seem to take place. We have carried out an in-depth kinetic characterization of a putatively chitin-active LPMO from Aspergillus fumigatus (AfAA11B), which, as we show here, has multiple unusual properties, such as a low redox potential and high oxidase activity. Furthermore, AfAA11B is hardly active on chitin, while being very active on soluble oligomers of N-acetylglucosamine. In the presence of chitotetraose, the enzyme can withstand considerable amounts of H2O2, which it uses to efficiently and stoichiometrically convert this substrate. The unique properties of AfAA11B allowed experiments showing that it is a strict peroxygenase and does not catalyze a monooxygenase reaction. This study shows that nature uses LPMOs for breaking glycosidic bonds in non-polymeric substrates in reactions that depend on H2O2. The quest for the true substrates of these enzymes, possibly carbohydrates in the cell wall of the fungus or its competitors, will be of major interest.

8.
Biotechnol Biofuels ; 14(1): 122, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044872

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. RESULTS: We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. CONCLUSION: The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA