Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Commun ; 14(1): 1077, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841877

RESUMO

Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio de Domínios Poros em Tandem/genética , Fosfolipídeos , Potenciais da Membrana , Potássio/metabolismo
2.
Nat Struct Mol Biol ; 29(11): 1092-1100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352139

RESUMO

Lipids play important roles in regulating membrane protein function, but the molecular mechanisms used are elusive. Here we investigated how anionic lipids modulate SthK, a bacterial pacemaker channel homolog, and HCN2, whose activity contributes to pacemaking in the heart and brain. Using SthK allowed the reconstitution of purified channels in controlled lipid compositions for functional and structural assays that are not available for the eukaryotic channels. We identified anionic lipids bound tightly to SthK and their exact binding locations and determined that they potentiate channel activity. Cryo-EM structures in the most potentiating lipids revealed an open state and identified a nonannular lipid bound with its headgroup near an intersubunit salt bridge that clamps the intracellular channel gate shut. Breaking this conserved salt bridge abolished lipid modulation in SthK and eukaryotic HCN2 channels, indicating that anionic membrane lipids facilitate channel opening by destabilizing these interactions. Our findings underline the importance of state-dependent protein-lipid interactions.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Lipídeos de Membrana , Ânions
3.
Elife ; 92020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33345771

RESUMO

K2P potassium channels are known to be modulated by volatile anesthetic (VA) drugs and play important roles in clinically relevant effects that accompany general anesthesia. Here, we utilize a photoaffinity analog of the VA isoflurane to identify a VA-binding site in the TREK1 K2P channel. The functional importance of the identified site was validated by mutagenesis and biochemical modification. Molecular dynamics simulations of TREK1 in the presence of VA found multiple neighboring residues on TREK1 TM2, TM3, and TM4 that contribute to anesthetic binding. The identified VA-binding region contains residues that play roles in the mechanisms by which heat, mechanical stretch, and pharmacological modulators alter TREK1 channel activity and overlaps with positions found to modulate TASK K2P channel VA sensitivity. Our findings define molecular contacts that mediate VA binding to TREK1 channels and suggest a mechanistic basis to explain how K2P channels are modulated by VAs.


Assuntos
Anestésicos Inalatórios/farmacologia , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Anestésicos Inalatórios/metabolismo , Animais , Sítios de Ligação , Humanos , Isoflurano/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus laevis , Peixe-Zebra
4.
Trends Pharmacol Sci ; 40(7): 464-481, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31147199

RESUMO

Significant progress has been made in the 21st century towards a comprehensive understanding of the mechanisms of action of general anesthetics, coincident with progress in structural biology and molecular, cellular, and systems neuroscience. This review summarizes important new findings that include target identification through structural determination of anesthetic binding sites, details of receptors and ion channels involved in neurotransmission, and the critical roles of neuronal networks in anesthetic effects on memory and consciousness. These recent developments provide a comprehensive basis for conceptualizing pharmacological control of amnesia, unconsciousness, and immobility.


Assuntos
Anestésicos Gerais/farmacologia , Anestesia Geral/métodos , Anestésicos Gerais/administração & dosagem , Anestésicos Gerais/efeitos adversos , Anestésicos Gerais/química , Animais , Estado de Consciência/efeitos dos fármacos , Humanos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sono/efeitos dos fármacos , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos
5.
Methods Enzymol ; 602: 391-416, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588040

RESUMO

The ability of a diverse group of agents to produce general anesthesia has long been an area of intense speculation and investigation. Over the past century, we have seen a paradigm shift from proposing that the anesthetized state arises from nonspecific interaction of anesthetics with the lipid membrane to the recognition that the function of distinct, and identifiable, membrane-embedded proteins is dramatically altered in the presence of intravenous and inhaled agents. Among proteinaceous targets, metabotropic and ionotropic receptors garnered much of the attention over the last 30 years, and it is only relatively recently that voltage-gated ion channels have clearly and rigorously been shown to be important molecular targets. In this review, we will consider the experimental issues relevant to two important ion channel anesthetic targets, HCN and K2P.


Assuntos
Anestésicos/farmacologia , Eletrofisiologia/métodos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Eletrofisiologia/instrumentação , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Neurônios , Oócitos , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Xenopus laevis
6.
J Neurosurg ; 129(2): 315-323, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29053074

RESUMO

OBJECTIVE The objective of this study was to evaluate the utility of diffusion tensor imaging (DTI) tractography-based targeting of the dentatorubrothalamic tract (DRT) for magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy in patients with essential tremor (ET) and correlate postprocedural tract disruption with clinical outcomes. METHODS Four patients received preprocedural and immediate postprocedural DTI in addition to traditional anatomical MRI sequences for MRgFUS thalamotomy. Optimal ablation sites were selected based on the patient-specific location of the DRT as demonstrated by DTI (direct targeting) and correlated with traditional atlas-based measurements for thalamic ventral intermediate nucleus (Vim) lesioning (indirect targeting). Fiber tracts were displayed three-dimensionally during the procedure and used in conjunction with clinical signs of tremor control for fine correction of the ablation site. Immediately following the conclusion of the procedure, the MRgFUS head frame was removed and patients were placed in a 32-channel MRI head coil for follow-up DTI and anatomical MRI sequences. RESULTS All patients had excellent postoperative tremor control and successful pre- and postprocedural DTI fiber tracking of the corticospinal tract, medial lemniscus, and DRT. Immediate postprocedure DTI failed to track the DRT ipsilateral to the lesion site with a preserved contralateral DRT, coincident with substantial resolution of contralateral tremor. CONCLUSIONS DTI can reliably identify the optimal ablation target and demonstrates tract disruption on immediate postprocedural imaging. A clinical improvement of ET was observed immediately following the procedure, correlating with DRT disruption and suggesting that interruption of the DRT is a consequence of clinically successful MRgFUS thalamotomy. These findings may have utility for both MRgFUS procedure planning in surgically naive patients and retreatment of patients who have previously undergone unsuccessful thalamic Vim lesioning.


Assuntos
Imagem de Tensor de Difusão , Tremor Essencial/diagnóstico por imagem , Neuroimagem/métodos , Cirurgia Assistida por Computador , Tálamo/cirurgia , Ultrassonografia de Intervenção , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Procedimentos Neurocirúrgicos , Resultado do Tratamento
7.
Anesthesiology ; 125(4): 821-2, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27649439
8.
Neuron ; 84(6): 1198-212, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25500157

RESUMO

Mechanical and thermal activation of ion channels is central to touch, thermosensation, and pain. The TRAAK/TREK K(2P) potassium channel subfamily produces background currents that alter neuronal excitability in response to pressure, temperature, signaling lipids, and anesthetics. How such diverse stimuli control channel function is unclear. Here we report structures of K(2P)4.1 (TRAAK) bearing C-type gate-activating mutations that reveal a tilting and straightening of the M4 inner transmembrane helix and a buckling of the M2 transmembrane helix. These conformational changes move M4 in a direction opposite to that in classical potassium channel activation mechanisms and open a passage lateral to the pore that faces the lipid bilayer inner leaflet. Together, our findings uncover a unique aspect of K(2P) modulation, indicate a means for how the K(2P) C-terminal cytoplasmic domain affects the C-type gate which lies ∼40Šaway, and suggest how lipids and bilayer inner leaflet deformations may gate the channel.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Temperatura , Animais , Células Cultivadas , Bicamadas Lipídicas/metabolismo , Mutação , Oócitos , Estimulação Física , Canais de Potássio/genética , Estrutura Secundária de Proteína , Xenopus laevis
9.
J Biol Chem ; 285(22): 17001-10, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20335165

RESUMO

Purine transport is essential for malaria parasites to grow because they lack the enzymes necessary for de novo purine biosynthesis. The Plasmodium falciparum Equilibrative Nucleoside Transporter 1 (PfENT1) is a member of the equilibrative nucleoside transporter (ENT) gene family. PfENT1 is a primary purine transport pathway across the P. falciparum plasma membrane because PfENT1 knock-out parasites are not viable at physiologic extracellular purine concentrations. Topology predictions and experimental data indicate that ENT family members have eleven transmembrane (TM) segments although their tertiary structure is unknown. In the current work, we showed that a naturally occurring polymorphism, F394L, in TM11 affects transport substrate K(m). We investigated the structure and function of the TM11 segment using the substituted cysteine accessibility method. We showed that mutation to Cys of two highly conserved glycine residues in a GXXXG motif significantly reduces PfENT1 protein expression levels. We speculate that the conserved TM11 GXXXG glycines may be critical for folding and/or assembly. Small, cysteine-specific methanethiosulfonate (MTS) reagents reacted with four TM11 Cys substitution mutants, L393C, I397C, T400C, and Y403C. Larger MTS reagents do not react with the more cytoplasmic positions. Hypoxanthine, a transported substrate, protected L393C, I397C, and T400C from covalent modification by the MTS reagents. Plotted on an alpha-helical wheel, Leu-393, Ile-397, and Thr-400 lie on one face of the helix in a 60 degrees arc suggesting that TM11 is largely alpha helical. We infer that they line a water-accessible surface, possibly the purine permeation pathway. These results advance our understanding of the ENT structure.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cisteína/química , Glicina/química , Hipoxantina/química , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Polimorfismo Genético , Estrutura Terciária de Proteína , Purinas/química , Homologia de Sequência de Aminoácidos
10.
Mol Biochem Parasitol ; 169(1): 40-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19818813

RESUMO

Plasmodium falciparum is a purine auxotroph. The transport of purine nucleosides and nucleobases from the host erythrocyte to the parasite cytoplasm is essential to support parasite growth. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a major route for purine transport across the parasite plasma membrane. Malarial parasites are sensitive to inhibitors of purine salvage pathway enzymes. The immucillin class of purine nucleoside phosphorylase inhibitors and the adenosine analog, tubercidin, block growth of P. falciparum under in vitro culture conditions. We sought to determine whether these inhibitors utilize PfENT1 to gain access to the parasite cytosol. There is considerable controversy in the literature regarding the K(m) and/or K(i) for purine transport by PfENT1 in the Xenopus oocyte expression system. We show that oocytes metabolize adenosine but not hypoxanthine. For adenosine, metabolism is the rate limiting step in oocyte uptake assays, making hypoxanthine the preferred substrate for PfENT1 transport studies in oocytes. We demonstrate that the K(i) for PfENT1 transport of hypoxanthine and adenosine is in the 300-700microM range. Effects of substrate metabolism on uptake studies may explain conflicting results in the literature regarding the PfENT1 adenosine transport K(m). PfENT1 transports the tubercidin class of compounds. None of the immucillin compounds tested inhibited PfENT1 transport of [(3)H]hypoxanthine or [(3)H]adenosine. Although nucleobases are transported, modifications of the ribose ring in corresponding nucleoside analogs affect substrate recognition by PfENT1. These results provide new insights into PfENT1 and the mechanism by which purine salvage pathway inhibitors are transported into the parasite cytoplasm.


Assuntos
Inibidores Enzimáticos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cinética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Oócitos/química , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Nucleosídeos de Purina/farmacologia , Purinas/química , Pirimidinonas/farmacologia , Tubercidina/farmacologia
11.
Mol Biochem Parasitol ; 165(2): 122-31, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19428659

RESUMO

Quinine (QN) continues to be an important treatment option for severe malaria, however resistance to this drug has emerged in field isolates of the etiologic agent Plasmodium falciparum. Quantitative trait loci investigations of QN resistance have mapped three loci of this complex trait. Two coincide with pfcrt and pfmdr1, involved in resistance to chloroquine (CQ) and other quinoline-based antimalarials. A third locus on chromosome 13 contains the sodium-proton exchanger (pfnhe) gene. Previous studies have associated pfnhe polymorphisms with reduced QN sensitivity in culture-adapted field isolates. Here, we provide direct evidence supporting the hypothesis that pfnhe contributes to QN resistance. Using allelic exchange, we reduced pfnhe expression by introducing a truncated 3' untranslated region (UTR) from pfcrt into the endogenous pfnhe 3'UTR. Transfections were performed with 1BB5 and 3BA6 (both CQ- and QN-resistant) as well as GC03 (CQ- and QN-sensitive), all progenies of the HB3xDd2 genetic cross. RNA and protein analyses of the ensuing recombinant clones demonstrated a approximately 50% decrease in pfnhe expression levels. A statistically significant 30% decrease in QN IC(50) values was associated with these decreased expression levels in 1BB5 and 3BA6 but not in GC03. CQ, mefloquine and lumefantrine IC(50) values were unaltered. Cytosolic pH values were similar in all parental lines and recombinant clones. Our observations support a role for pfnhe in QN resistance in a strain-dependent manner, which might be contingent on pre-existing resistance to CQ and/or QN. These data bolster observations that QN resistance is a complex trait requiring the contribution of multiple transporter proteins.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Quinina/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Animais , Citosol/química , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Concentração de Íons de Hidrogênio , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Especificidade da Espécie , Fatores de Tempo
12.
J Biol Chem ; 283(47): 32889-99, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18799466

RESUMO

Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.


Assuntos
Monofosfato de Adenosina/química , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Purinas/química , Adenosina/química , Difosfato de Adenosina/química , Animais , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Modelos Químicos , Nucleosídeos/química , Oócitos/metabolismo , Reação em Cadeia da Polimerase , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA