Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biodivers Data J ; 12: e121508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812888

RESUMO

Background: The marine isopod family Acanthaspidiidae Menzies, 1962 (Asellota, Janiroidea) has global distribution from shelf to hadal depth. The majority of species has been recorded from relatively deep waters and the Southern Hemisphere. To date, 36 species have been described in the family belonging to three genera: Ianthopsis Beddard, 1886; Iolanthe Beddard, 1886; and Mexicope Hooker, 1985. New information: Here, a new species of Mexicope is described from Maltese waters, adding a fourth species to the genus. It is the first member of the family reported from the Mediterranean Sea. The new species can be recognised by the unique combination of the following characters: cephalothorax with pre-ocular spine large and pointed anterolaterally, rostral projection blunt, eyes reduced; pereonal sternites each with one ventral spine; pereonite two lateral margins with single projection; pleotelson posterior apex long, projecting to approximately half of the length of the uropod protopod; pleopods I distolateral lobes projecting beyond distomedial lobes, apices curved and pointed laterally; uropod exopod length approximately 0.5 endopod length. An identification key to the species of Mexicope is presented and the generic diagnoses of Ianthopsis and Mexicope are compared, discussed and revised.

2.
Bioessays ; 45(9): e2300070, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37318314

RESUMO

Increasing complexity and specialisation of modern sciences has led to increasingly collaborative publications, as well as the involvement of commercial services. Modern integrative taxonomy likewise depends on many lines of evidence and is increasingly complex, but the trend of collaboration lags and various attempts at 'turbo taxonomy' have been unsatisfactory. We are developing a taxonomic service in the Senckenberg Ocean Species Alliance to provide fundamental data for new species descriptions. This will also function as a hub to connect a global network of taxonomists, assembling an alliance of scientists working on potential new species to tackle both the extinction and inclusion crises we face today. The current rate of new species descriptions is simply too slow; the discipline is often dismissed as old fashioned, and there is a crisis level need for taxonomic descriptions to come to grips with the scale of Anthropocene biodiversity loss. Here, we envision how the process of describing and naming species would benefit from a service supporting the acquisition of descriptive data. Also see the video abstract here: https://youtu.be/E8q3KJor_F8.


Assuntos
Biodiversidade
3.
Proc Natl Acad Sci U S A ; 117(27): 15450-15459, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554606

RESUMO

Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2 of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Evolução Biológica , Monitorização de Parâmetros Ecológicos/métodos , Tecnologia de Sensoriamento Remoto , Acústica , Animais , Oceano Atlântico , Recuperação e Remediação Ambiental
4.
PeerJ ; 8: e8621, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149025

RESUMO

BACKGROUND: The Clarion-Clipperton Fracture Zone (CCFZ) in the Northeast Central Pacific Ocean is a region of heightened scientific and public interest because of its wealth in manganese nodules. Due to a poor ecological understanding at the abyssal seafloor and limited knowledge of the organisms inhabiting this area, huge efforts in alpha taxonomy are required. To predict and manage potential hazards associated with future mining, taxonomy is an essential first step to grasp fundamental ecosystem traits, such as biogeographic patterns, connectivity, and the potential for post-impact recolonization. Amongst samples from the Global Sea Mineral Resources NV exploration area (EA) in the CCFZ an undescribed species of the isopod crustacean family Macrostylidae was discovered. Previously, it has been reported from two other nearby regions, the Institut Français de Recherche pour l'Exploitation de la Mer and BGR EAs. There it was one of the more widely distributed and abundant species of the benthic macrofauna and exhibited geographically structured populations. It nevertheless remained taxonomically undescribed so far. METHODS: The new species is described by means of integrative taxonomy. Morphologically, macro photography, confocal microscopy, scanning electron microscopy and light microscopy were used to describe the species and to get first insights on its phylogenetic origin. Additionally, mitochondrial DNA markers were used to test the morphological allocation of the two dimorphic sexes and juvenile stages, to analyze geographic patterns of genetic differentiation, and to study intra-and inter-species relationships, also in light of previously published population genetics on this species. RESULTS: The new species, Macrostylis metallicola spec. nov., is a typical representative of Macrostylidae as recognizable from the fossosoma, prognathous cephalothorax, and styliform uropods. It can be morphologically distinguished from congeners by a combination of character states which include the autapomorphic shape of the first pleopod of the copulatory male. A sexual dimorphism, as expressed by a peculiar sequence of article length-width ratios of the male antennula, indicates a relationship with M. marionae Kniesz, Brandt & Riehl (2018) and M. longipes Hansen (1916) amongst other species sharing this dimorphism. Mitochondrial genetic markers point in a similar direction. M. metallicola appears to be amongst the more common and widely distributed components of the benthic macrofauna in this region which may suggest a resilience of this species to future mining activities because of its apparent potential for recolonization of impacted sites from adjacent areas of particular environmental interest. The genetic data, however, show geographic clustering of its genetic variability, pointing towards a limited potential for dispersal. Local extinction of populations could potentially not be compensated quickly and would mean a loss of genetic diversity of this species.

5.
Mol Phylogenet Evol ; 82 Pt A: 330-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450103

RESUMO

Determining factors that facilitate the transition from a solitary to a social lifestyle is a major challenge in evolutionary biology, especially in taxa that are usually aggressive towards conspecifics. Most spiders live solitarily and few species are known to be social. Nevertheless, sociality has evolved multiple times across several families and nearly all studied social lineages have originated from a periodically social (subsocial) ancestor. Group-living crab spiders (Thomisidae) are exclusively found in Australia and differ from most other social spiders because they lack a communal capture web. Three of the group-living species were placed in the genus Diaea and another in the genus Xysticus. Most Australian thomisids are, however, difficult to identify as most descriptions are old and of poor quality, and the genera Diaea and Xysticus may not correspond to monophyletic groups. Here, we clarify the phylogenetic relationships of the four group-living Australian thomisids and conclude that amongst these subsociality has evolved two to three times independently. The subsocial Xysticus bimaculatus is not closely related to any of the social Diaea and an independent origin of subsociality is likely in this case. The presented data indicates that within Diaea two origins of subsociality are possible. Our results help to understand the evolution of sociality in thomisids and support the hypothesis that permanent sociality in spiders has evolved multiple times relatively recently from subsocial ancestors.


Assuntos
Comportamento Animal , Evolução Biológica , Filogenia , Comportamento Social , Aranhas/classificação , Animais , Austrália , Teorema de Bayes , Feminino , Funções Verossimilhança , Masculino , Modelos Genéticos , Análise de Sequência de DNA , Aranhas/genética
6.
Zookeys ; (427): 1-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147462

RESUMO

Spiders have become an important model to study the evolution of sociality, but a lack of their detailed natural history and taxonomy hinders broader comparative studies. Group-living crab spiders (Thomisidae) provide an excellent contrast to other social spiders since they lack a communal capture web, which was thought to be a critical factor in the evolution of sociality. Only three non-webbuilding crab-spider species are known to be subsocial or social, all of which belong to the genus Diaea Thorell, 1869. The aim of this study is to describe the social lifestyle of Xysticus bimaculatus L. Koch, 1867 for the first time. Furthermore, we present a detailed re-description of this species and discuss its taxonomic implications. Like other subsocial crab spiders, X. bimaculatus builds nests from tree leaves. Nests contain up to 38 spiders and sometimes several adult females, indicating the species may be at a transitory stage between subsociality and permanent sociality.

7.
PLoS One ; 8(9): e74218, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086322

RESUMO

Eurythenes gryllus is one of the most widespread amphipod species, occurring in every ocean with a depth range covering the bathyal, abyssal and hadal zones. Previous studies, however, indicated the existence of several genetically and morphologically divergent lineages, questioning the assumption of its cosmopolitan and eurybathic distribution. For the first time, its genetic diversity was explored at the global scale (Arctic, Atlantic, Pacific and Southern oceans) by analyzing nuclear (28S rDNA) and mitochondrial (COI, 16S rDNA) sequence data using various species delimitation methods in a phylogeographic context. Nine putative species-level clades were identified within E. gryllus. A clear distinction was observed between samples collected at bathyal versus abyssal depths, with a genetic break occurring around 3,000 m. Two bathyal and two abyssal lineages showed a widespread distribution, while five other abyssal lineages each seemed to be restricted to a single ocean basin. The observed higher diversity in the abyss compared to the bathyal zone stands in contrast to the depth-differentiation hypothesis. Our results indicate that, despite the more uniform environment of the abyss and its presumed lack of obvious isolating barriers, abyssal populations might be more likely to show population differentiation and undergo speciation events than previously assumed. Potential factors influencing species' origins and distributions, such as hydrostatic pressure, are discussed. In addition, morphological findings coincided with the molecular clades. Of all specimens available for examination, those of the bipolar bathyal clade seemed the most similar to the 'true' E. gryllus. We present the first molecular evidence for a bipolar distribution in a macro-benthic deep-sea organism.


Assuntos
Anfípodes/genética , Variação Genética , Anfípodes/classificação , Animais , Geografia , Filogenia , Especificidade da Espécie
8.
PLoS One ; 7(11): e49354, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145160

RESUMO

The Amundsen Sea, Antarctica, is amongst the most rapidly changing environments of the world. Its benthic inhabitants are barely known and the BIOPEARL 2 project was one of the first to biologically explore this region. Collected during this expedition, Macrostylis roaldi sp. nov. is described as the first isopod discovered on the Amundsen-Sea shelf. Amongst many characteristic features, the most obvious characters unique for M. roaldi are the rather short pleotelson and short operculum as well as the trapezoid shape of the pleotelson in adult males. We used DNA barcodes (COI) and additional mitochondrial markers (12S, 16S) to reciprocally illuminate morphological results and nucleotide variability. In contrast to many other deep-sea isopods, this species is common and shows a wide distribution. Its range spreads from Pine Island Bay at inner shelf right to the shelf break and across 1,000 m bathymetrically. Its gene pool is homogenized across space and depth. This is indicative for a genetic bottleneck or a recent colonization history. Our results suggest further that migratory or dispersal capabilities of some species of brooding macrobenthos have been underestimated. This might be relevant for the species' potential to cope with effects of climate change. To determine where this species could have survived the last glacial period, alternative refuge possibilities are discussed.


Assuntos
Isópodes/genética , Filogenia , Migração Animal , Animais , Mudança Climática , Código de Barras de DNA Taxonômico , Feminino , Marcadores Genéticos , Geografia , Isópodes/anatomia & histologia , Isópodes/fisiologia , Masculino
9.
Zookeys ; (57): 9-49, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21594187

RESUMO

Descriptions of Macrostylis antennamagnasp. n. and Macrostylis uniformissp. n. are presented with notes on intraspecific variability and sexual dimorphism. Macrostylis uniformissp. n. showes differences to Macrostylis antennamagnasp. n. in the length of the antenna 2, the shape of the pleotelson and length of uropods.The genus Desmostylis Brandt, 1992 (formerly including the two species Desmostylis obscurus Brandt, 1992 and Desmostylis gerdesi Brandt, 2002) is synonymised with the genus Macrostylis. Based on type material additional remarks and additions to the original descriptions are provided for both species. Results lead to following nomenclatorial changes: Macrostylis obscurus (Brandt, 1992), comb. n. and Macrostylis gerdesi (Brandt, 2002), comb. n. A setal nomenclature is proposed and the diagnosis for the family is revised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA