Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Rev ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722240

RESUMO

The objective of this review was to critically examine existing digital applications, tailored for use by citizens and professionals, to provide diet monitoring, diet planning, and precision nutrition. We sought to identify the strengths and weaknesses of such digital applications, while exploring their potential contributions to enhancing public health, and discussed potential developmental pathways. Nutrition is a critical aspect of maintaining good health, with an unhealthy diet being one of the primary risk factors for chronic diseases, such as obesity, diabetes, and cardiovascular disease. Tracking and monitoring one's diet has been shown to help improve health and weight management. However, this task can be complex and time-consuming, often leading to frustration and a lack of adherence to dietary recommendations. Digital applications for diet monitoring, diet generation, and precision nutrition offer the promise of better health outcomes. Data on current nutrition-based digital tools was collected from pertinent literature and software providers. These digital tools have been designed for particular user groups: citizens, nutritionists, and physicians and researchers employing genetics and epigenetics tools. The applications were evaluated in terms of their key functionalities, strengths, and limitations. The analysis primarily concentrated on artificial intelligence algorithms and devices intended to streamline the collection and organization of nutrition data. Furthermore, an exploration was conducted of potential future advancements in this field. Digital applications designed for the use of citizens allow diet self-monitoring, and they can be an effective tool for weight and diabetes management, while digital precision nutrition solutions for professionals can provide scalability, personalized recommendations for patients, and a means of providing ongoing diet support. The limitations in using these digital applications include data accuracy, accessibility, and affordability, and further research and development are required. The integration of artificial intelligence, machine learning, and blockchain technology holds promise for improving the performance, security, and privacy of digital precision nutrition interventions. Multidisciplinarity is crucial for evidence-based and accessible solutions. Digital applications for diet monitoring and precision nutrition have the potential to revolutionize nutrition and health. These tools can make it easier for individuals to control their diets, help nutritionists provide better care, and enable physicians to offer personalized treatment.

2.
Nutrients ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764715

RESUMO

The human gut microbiome, an intricate ecosystem housing trillions of microorganisms within the gastrointestinal tract, holds significant importance in human health and the development of diseases. Recent advances in technology have allowed for an in-depth exploration of the gut microbiome, shedding light on its composition and functions. Of particular interest is the role of diet in shaping the gut microbiome, influencing its diversity, population size, and metabolic functions. Precision nutrition, a personalized approach based on individual characteristics, has shown promise in directly impacting the composition of the gut microbiome. However, to fully understand the long-term effects of specific diets and food components on the gut microbiome and to identify the variations between individuals, longitudinal studies are crucial. Additionally, precise methods for collecting dietary data, alongside the application of machine learning techniques, hold immense potential in comprehending the gut microbiome's response to diet and providing tailored lifestyle recommendations. In this study, we investigated the complex mechanisms that govern the diverse impacts of nutrients and specific foods on the equilibrium and functioning of the individual gut microbiome of seven volunteers (four females and three males) with an average age of 40.9 ± 10.3 years, aiming at identifying potential therapeutic targets, thus making valuable contributions to the field of personalized nutrition. These findings have the potential to revolutionize the development of highly effective strategies that are tailored to individual requirements for the management and treatment of various diseases.

3.
Biosensors (Basel) ; 13(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504146

RESUMO

Chewing is essential in regulating metabolism and initiating digestion. Various methods have been used to examine chewing, including analyzing chewing sounds and using piezoelectric sensors to detect muscle contractions. However, these methods struggle to distinguish chewing from other movements. Electromyography (EMG) has proven to be an accurate solution, although it requires sensors attached to the skin. Existing EMG devices focus on detecting the act of chewing or classifying foods and do not provide self-awareness of chewing habits. We developed a non-invasive device that evaluates a personalized chewing style by analyzing various aspects, like chewing time, cycle time, work rate, number of chews and work. It was tested in a case study comparing the chewing pattern of smokers and non-smokers, as smoking can alter chewing habits. Previous studies have shown that smokers exhibit reduced chewing speed, but other aspects of chewing were overlooked. The goal of this study is to present the device and provide additional insights into the effects of smoking on chewing patterns by considering multiple chewing features. Statistical analysis revealed significant differences, as non-smokers had more chews and higher work values, indicating more efficient chewing. The device provides valuable insights into personalized chewing profiles and could modify unhealthy chewing habits.


Assuntos
Mastigação , Fumar , Mastigação/fisiologia , Alimentos , Fatores de Tempo , Eletromiografia/métodos
4.
Nutrients ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904199

RESUMO

Nutrition is a cross-cutting sector in medicine, with a huge impact on health, from cardiovascular disease to cancer. Employment of digital medicine in nutrition relies on digital twins: digital replicas of human physiology representing an emergent solution for prevention and treatment of many diseases. In this context, we have already developed a data-driven model of metabolism, called a "Personalized Metabolic Avatar" (PMA), using gated recurrent unit (GRU) neural networks for weight forecasting. However, putting a digital twin into production to make it available for users is a difficult task that as important as model building. Among the principal issues, changes to data sources, models and hyperparameters introduce room for error and overfitting and can lead to abrupt variations in computational time. In this study, we selected the best strategy for deployment in terms of predictive performance and computational time. Several models, such as the Transformer model, recursive neural networks (GRUs and long short-term memory networks) and the statistical SARIMAX model were tested on ten users. PMAs based on GRUs and LSTM showed optimal and stable predictive performances, with the lowest root mean squared errors (0.38 ± 0.16-0.39 ± 0.18) and acceptable computational times of the retraining phase (12.7 ± 1.42 s-13.5 ± 3.60 s) for a production environment. While the Transformer model did not bring a substantial improvement over RNNs in term of predictive performance, it increased the computational time for both forecasting and retraining by 40%. The SARIMAX model showed the worst performance in term of predictive performance, though it had the best computational time. For all the models considered, the extent of the data source was a negligible factor, and a threshold was established for the number of time points needed for a successful prediction.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Estado Nutricional , Previsões , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA