Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Cancer Educ ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658518

RESUMO

Children's early awareness about cancer, through exposure to cancer biology and prevention strategies and research principles, is a promising focus of education and learning. It may also benefit the pipeline of people entering into science, technology, engineering, and math (STEM) careers. We describe an educational pilot program for elementary school students, using developmentally appropriate activities focused on cancer at a museum dedicated to children's maker-centered learning and STEM. The program was implemented through a public school in Washington, DC serving students underrepresented in STEM. Program conceptualization, museum and school engagement, and maker learning pedagogy are described, as well as curricular outcomes. A total of N = 111 students (44% female, 75% Black/African American, 5% Latine) participated in a day-long field trip. Museum educators, assisted by cancer center researchers, led a multipart workshop on cancer and the environment and hands-on rotation of activities in microbiology, immunology, and ultraviolet radiation safety; students then completed self-report evaluations. Results indicate that nearly all (> 95%) students practiced activities typical of a STEM professional at the program, and > 70% correctly answered factual questions about topics studied. Importantly, 87-94% demonstrated clear STEM interest, a sense of belonging in the field, and practice implementing skills for success in STEM (e.g., perseverance, imagination, teamwork). This pilot demonstrated acceptability and feasibility in delivering a cancer-focused curriculum to underserved elementary students using maker learning while favorably impacting key objectives. Future scale-up of this program is warranted, with the potential to increase students' motivation to engage in STEM and cancer research.

2.
Cancer Res Commun ; 4(1): 134-151, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38112643

RESUMO

Wnt ligand WNT4 is critical in female reproductive tissue development, with WNT4 dysregulation linked to related pathologies including breast cancer (invasive lobular carcinoma, ILC) and gynecologic cancers. WNT4 signaling in these contexts is distinct from canonical Wnt signaling yet inadequately understood. We previously identified atypical intracellular activity of WNT4 (independent of Wnt secretion) regulating mitochondrial function, and herein examine intracellular functions of WNT4. We further examine how convergent mechanisms of WNT4 dysregulation impact cancer metabolism. In ILC, WNT4 is co-opted by estrogen receptor α (ER) via genomic binding in WNT4 intron 1, while in gynecologic cancers, a common genetic polymorphism (rs3820282) at this ER binding site alters WNT4 regulation. Using proximity biotinylation (BioID), we show canonical Wnt ligand WNT3A is trafficked for secretion, but WNT4 is localized to the cytosol and mitochondria. We identified DHRS2, mTOR, and STAT1 as putative WNT4 cytosolic/mitochondrial signaling partners. Whole metabolite profiling, and integrated transcriptomic data, support that WNT4 mediates metabolic reprogramming via fatty acid and amino acid metabolism. Furthermore, ovarian cancer cell lines with rs3820282 variant genotype are WNT4 dependent and have active WNT4 metabolic signaling. In protein array analyses of a cohort of 103 human gynecologic tumors enriched for patient diversity, germline rs3820282 genotype is associated with metabolic remodeling. Variant genotype tumors show increased AMPK activation and downstream signaling, with the highest AMPK signaling activity in variant genotype tumors from non-White patients. Taken together, atypical intracellular WNT4 signaling, in part via genetic dysregulation, regulates the distinct metabolic phenotypes of ILC and gynecologic cancers. SIGNIFICANCE: WNT4 regulates breast and gynecologic cancer metabolism via a previously unappreciated intracellular signaling mechanism at the mitochondria, with WNT4 mediating metabolic remodeling. Understanding WNT4 dysregulation by estrogen and genetic polymorphism offers new opportunities for defining tumor biology, precision therapeutics, and personalized cancer risk assessment.


Assuntos
Neoplasias da Mama , Neoplasias dos Genitais Femininos , Humanos , Feminino , Ligantes , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias dos Genitais Femininos/genética , Transdução de Sinais , Neoplasias da Mama/genética , Proteína Wnt4/genética , Carbonil Redutase (NADPH)/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38009092

RESUMO

Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.

4.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014332

RESUMO

Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, we report a three-dimensional (3D) engineered model of acquired TMZ resistance using two isogenically-matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. We benchmark response of TMZ-resistant vs. TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform and further validate drug response at physiologically relevant TMZ concentrations. We show changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing our understanding of GBM progression and treatment response to guide the development of novel treatment strategies. Teaser: A hydrogel model to investigate the impact of acquired drug resistance on functional response in glioblastoma.

5.
Endocrinology ; 164(12)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37897495

RESUMO

Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Estrogênios/metabolismo , Linhagem Celular Tumoral , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
7.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662291

RESUMO

Background: Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. Methods: To mimic ETR to aromatase inhibitors (AI), we developed two long-term estrogen-deprived (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 molecular subtyping, genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Results: Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of the more aggressive MM361 LTED model system identified exonic mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and antioxidant genes associated with ferroptosis, including GPX4. Combining the GPX4 inhibitor RSL3 with anti-HER2 agents induced significant cell death in both the MM361 and BT474 LTEDs. Conclusions: The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.

8.
J Endocr Soc ; 7(10): bvad117, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37766843

RESUMO

Background: Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, riluzole has shown antitumor activity in multiple malignancies, including melanoma, glioblastoma, and breast cancer. We previously reported that the acquisition of tamoxifen resistance in a cellular model of invasive lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by riluzole. Methods: We tested the ability of riluzole to reduce cell growth, alone and in combination with endocrine therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-derived xenograft model HCI-013EI. Results: Single-agent riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple prosurvival signaling molecules, including Akt/mTOR, CREB, and Fak/Src family kinases. Riluzole, in combination with either fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of riluzole plus fulvestrant significantly reduced proliferation in ex vivo primary breast tumor explant cultures. Conclusion: Riluzole may offer therapeutic benefits in diverse ER+ breast cancers, including lobular breast cancer.

9.
PLoS One ; 18(1): e0267492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36716335

RESUMO

Matriptase is a type II transmembrane serine protease that is widely expressed in normal epithelial cells and epithelial cancers. Studies have shown that regulation of matriptase expression and activation becomes deranged in several cancers and is associated with poor disease-free survival. Although the central mechanism of its activation has remained unknown, our lab has previously demonstrated that inflammatory conditions such as intracellular pH decrease strongly induces matriptase activation. In this investigation, we first demonstrate clear matriptase activation following Fulvestrant (ICI) and Tykerb (Lapatinib) treatment in HER2-amplified, estrogen receptor (ER)-positive BT474, MDA-MB-361 and ZR-75-30 or single ER-positive MCF7 cells, respectively. This activation modestly involved Phosphoinositide 3-kinase (PI3K) activation and occurred as quickly as six hours post treatment. We also demonstrate that matriptase activation is not a universal hallmark of stress, with Etoposide treated cells showing a larger degree of matriptase activation than Lapatinib and ICI-treated cells. While etoposide toxicity has been shown to be mediated through reactive oxygen species (ROS) and MAPK/ERK kinase (MEK) activity, MEK activity showed no correlation with matriptase activation. Novelly, we demonstrate that endogenous and exogenous matriptase activation are ROS-mediated in vitro and inhibited by N-acetylcysteine (NAC). Lastly, we demonstrate matriptase-directed NAC treatment results in apoptosis of several breast cancer cell lines either alone or in combination with clinically used therapeutics. These data demonstrate the contribution of ROS-mediated survival, its independence of kinase-mediated survival, and the plausibility of using matriptase activation to indicate the potential success of antioxidant therapy.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Lapatinib , Etoposídeo
10.
Sci Adv ; 8(25): eabn3471, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731869

RESUMO

Temozolomide (TMZ) is a chemotherapeutic agent that has been the first-line standard of care for the aggressive brain cancer glioblastoma (GBM) since 2005. Although initially beneficial, TMZ resistance is universal and second-line interventions are an unmet clinical need. Here, we took advantage of the known mechanism of action of TMZ to target guanines (G) and investigated G-rich G-quadruplex (G4) and splice site changes that occur upon TMZ resistance. We report that TMZ-resistant GBM has guanine mutations that disrupt the G-rich DNA G4s and splice sites that lead to deregulated alternative splicing. These alterations create vulnerabilities, which are selectively targeted by either the G4-stabilizing drug TMPyP4 or a novel splicing kinase inhibitor of cdc2-like kinase. Last, we show that the G4 and RNA binding protein EWSR1 aggregates in the cytoplasm in TMZ-resistant GBM cells and patient samples. Together, our findings provide insight into targetable vulnerabilities of TMZ-resistant GBM and present cytoplasmic EWSR1 as a putative biomarker.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/metabolismo , Guanina/farmacologia , Humanos , Mutação , RNA , Temozolomida/farmacologia , Temozolomida/uso terapêutico
11.
Mol Cancer Res ; 20(6): 837-840, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35276005

RESUMO

Preclinical model systems are essential research tools that help us understand the biology of invasive lobular carcinoma of the breast (ILC). The number of well-established ILC models is increasing but remain limited. Lower incidence of ILC, underrepresentation of patients with ILC in clinical trials, and intrinsic ILC tumor characteristics all contribute to this challenge. Hence, there is significant need to continually develop better model systems to recapitulate the essential characteristics of ILC biology, genetics, and histology, and empower preclinical therapeutic studies to be translated back into the clinic. In this Perspective, we highlight recent advances in in vivo experimental models, which recapitulate key features of ILC biology and disease progression and potentially reshape the future of ILC translational research. We assert that all existing in vitro and in vivo ILC preclinical models have their strengths and weaknesses, and that it is necessary to bridge key deficiencies in each model context as we move forward with ILC research. Thus, unlocking the mysteries of ILC will be best achieved by choosing the right combination of preclinical model systems.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Biologia , Mama/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Carcinoma Lobular/terapia , Feminino , Humanos
12.
Endocrinology ; 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33411889

RESUMO

Nuclear receptors are critically important in normal and disease physiology. Recent advances have created opportunities to expand our success in nuclear receptor (NR) basic and translational research, but this field lacks a platform to lay the collaborative groundwork for aspiring and upcoming leaders in the field. Nuclear Receptor IMPACT (Interdisciplinary Meeting for Progress And Collaboration Together) is a new collaborative group designed specifically for early- and mid-career faculty who study nuclear receptors in their many forms. A unique goal of NR IMPACT is to also directly address career challenges for early- and mid-career faculty. NR IMPACT held an inaugural conference in September 2020 and developed a roadmap identifying five major structural and science policy challenges facing early- and mid-career faculty. NR IMPACT identified potential best practices, resources needed, and key action items to address these issues. NR IMPACT is a first-of-its-kind cohort dedicated to building a foundation for the scientific and professional growth of investigators studying nuclear receptors, and supporting new collaborations that will advance new paradigms in NR biology. Our unique focus on career development will enhance the success of current faculty and remove hurdles for new faculty, creating a robust pipeline of investigators with exciting new ideas to advance NR biology. The growth of NR IMPACT will build a strong peer-mentoring cohort that can be a unique resource for researchers and a prototype peer group for other disciplines.

13.
Cancer Res ; 81(3): 732-746, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184106

RESUMO

Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Fulvestranto/farmacologia , Expressão Gênica , Humanos , Mutação
14.
Methods Enzymol ; 636: 299-322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32178823

RESUMO

We have used RNA interference (RNAi) screening technology to reveal unknown components of biological signaling pathways including survival mechanisms of estrogen-independent breast cancer cell growth and cancer cell resistance to immune attack. In this chapter, a detailed protocol describing the use of RNAi screening to identify factors important for the proliferation of estrogen-independent MCF7 breast cancer cells will be described. Resistance to therapies that target the estrogen pathway remains a challenge in the treatment of estrogen receptor-positive breast cancer. To address this challenge, small interfering-RNA (siRNA)-based libraries targeting an estrogen receptor (ER)- and aromatase-centered network, including 631 genes relevant to estrogen signaling, was designed and constructed for RNAi screening. This protocol will include the following parts: (1) selection of RNAi transfection reagent for specific cells; (2) optimization of RNAi screening conditions using Z'-factor; (3) procedure of ER-network gene siRNA library screening using automated machines under optimized experimental conditions; and (4) method of analysis for RNAi screening data to identify specific determinants important for cell proliferation. 46 genes were found to be selectively required for the survival of estrogen-independent MCF7-derived cells.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
15.
JCO Clin Cancer Inform ; 4: 71-88, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990579

RESUMO

PURPOSE: In this work, we introduce CDGnet (Cancer-Drug-Gene Network), an evidence-based network approach for recommending targeted cancer therapies. CDGnet represents a user-friendly informatics tool that expands the range of targeted therapy options for patients with cancer who undergo molecular profiling by including the biologic context via pathway information. METHODS: CDGnet considers biologic pathway information specifically by looking at targets or biomarkers downstream of oncogenes and is personalized for individual patients via user-inputted molecular alterations and cancer type. It integrates a number of different sources of knowledge: patient-specific inputs (molecular alterations and cancer type), US Food and Drug Administration-approved therapies and biomarkers (curated from DailyMed), pathways for specific cancer types (from Kyoto Encyclopedia of Genes and Genomes [KEGG]), gene-drug connections (from DrugBank), and oncogene information (from KEGG). We consider 4 different evidence-based categories for therapy recommendations. Our tool is delivered via an R/Shiny Web application. For the 2 categories that use pathway information, we include an interactive Sankey visualization built on top of d3.js that also provides links to PubChem. RESULTS: We present a scenario for a patient who has estrogen receptor (ER)-positive breast cancer with FGFR1 amplification. Although many therapies exist for patients with ER-positive breast cancer, FGFR1 amplifications may confer resistance to such treatments. CDGnet provides therapy recommendations, including PIK3CA, MAPK, and RAF inhibitors, by considering targets or biomarkers downstream of FGFR1. CONCLUSION: CDGnet provides results in a number of easily accessible and usable forms, separating targeted cancer therapies into categories in an evidence-based manner that incorporates biologic pathway information.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Medicina Baseada em Evidências , Redes Reguladoras de Genes , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Medicina de Precisão , Biomarcadores Tumorais/antagonistas & inibidores , Humanos , Neoplasias/genética , Neoplasias/patologia , Seleção de Pacientes
16.
Breast Cancer Res Treat ; 179(3): 585-604, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31741180

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC)/basal-like breast cancer (BLBC) is a highly aggressive form of breast cancer. We previously reported that a small molecule agonist ligand for the orphan nuclear receptor estrogen-related receptor beta (ERRß or ESRRB) has growth inhibitory and anti-mitotic activity in TNBC cell lines. In this study, we evaluate the association of ESRRB mRNA, copy number levels, and protein expression with demographic, clinicopathological, and gene expression features in breast tumor clinical specimens. METHODS: ESRRB mRNA-level expression and clinical associations were analyzed using RNAseq data. Array-based comparative genomic hybridization determined ESRRB copy number in African-American and Caucasian women. Transcription factor activity was measured using promoter-reporter luciferase assays in TNBC cell lines. Semi-automatic quantification of immunohistochemistry measured ERRß protein expression on a 150-patient tissue microarray series. RESULTS: ESRRB mRNA expression is significantly lower in TNBC/BLBC versus other breast cancer subtypes. There is no evidence of ESRRB copy number loss. ESRRB mRNA expression is correlated with the expression of genes associated with neuroactive ligand-receptor interaction, metabolic pathways, and deafness. These genes contain G/C-rich transcription factor binding motifs. The ESRRB message is alternatively spliced into three isoforms, which we show have different transcription factor activity in basal-like versus other TNBC cell lines. We further show that the ERRß2 and ERRßsf isoforms are broadly expressed in breast tumors at the protein level. CONCLUSIONS: Decreased ESRRB mRNA expression and distinct patterns of ERRß isoform subcellular localization and transcription factor activity are key features in TNBC/BLBC.


Assuntos
Biomarcadores Tumorais , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Fatores Etários , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
17.
FASEB J ; 33(12): 13476-13491, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570001

RESUMO

Glioblastoma (GBM; grade 4 glioma) is a highly aggressive and incurable tumor. GBM has recently been characterized as highly dependent on alternative splicing, a critical driver of tumor heterogeneity and plasticity. Estrogen-related receptor ß (ERR-ß) is an orphan nuclear receptor expressed in the brain, where alternative splicing of the 3' end of the pre-mRNA leads to the production of 3 validated ERR-ß protein products: ERR-ß short form (ERR-ßsf), ERR-ß2, and ERR-ß exon 10 deleted. Our prior studies have shown the ERR-ß2 isoform to play a role in G2/M cell cycle arrest and induction of apoptosis, in contrast to the function of the shorter ERR-ßsf isoform in senescence and G1 cell cycle arrest. In this study, we sought to better define the role of the proapoptotic ERR-ß2 isoform in GBM. We show that the ERR-ß2 isoform is located not only in the nucleus but also in the cytoplasm. ERR-ß2 suppresses GBM cell migration and interacts with the actin nucleation-promoting factor cortactin, and an ERR-ß agonist is able to remodel the actin cytoskeleton and similarly suppress GBM cell migration. We further show that inhibition of the splicing regulatory cdc2-like kinases in combination with an ERR-ß agonist shifts isoform expression in favor of ERR-ß2 and potentiates inhibition of growth and migration in GBM cells and intracranial tumors.-Tiek, D. M., Khatib, S. A., Trepicchio, C. J., Heckler, M. M., Divekar, S. D., Sarkaria, J. N., Glasgow, E., Riggins, R. B. Estrogen-related receptor ß activation and isoform shifting by cdc2-like kinase inhibition restricts migration and intracranial tumor growth in glioblastoma.


Assuntos
Neoplasias Encefálicas/prevenção & controle , Movimento Celular , Glioblastoma/prevenção & controle , Hidrazinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Tiazóis/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular , Proliferação de Células , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Isoformas de Proteínas , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
18.
Breast Cancer Res ; 20(1): 106, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180878

RESUMO

BACKGROUND: Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin and high expression of estrogen receptor alpha (ERα). In many cases, ILC is effectively treated with adjuvant aromatase inhibitors (AIs); however, acquired AI resistance remains a significant problem. METHODS: To identify underlying mechanisms of acquired anti-estrogen resistance in ILC, we recently developed six long-term estrogen-deprived (LTED) variant cell lines from the human ILC cell lines SUM44PE (SUM44; two lines) and MDA-MB-134VI (MM134; four lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing followed by candidate gene expression and functional studies. RESULTS: MM134 LTED cells expressed ER at a decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all six independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells but not MM134 LTED cells. In contrast, MM134 LTED cells displayed a high expression of the sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in beta-oxidation, than their respective parental control cells. Finally, in silico expression analysis in clinical specimens from a neo-adjuvant endocrine trial showed a significant association between the increase of SREBP1 expression and lack of clinical response, providing further support for a role of SREBP1 in the acquisition of endocrine resistance in breast cancer. CONCLUSIONS: Our characterization of a unique series of AI-resistant ILC models identifies the activation of key regulators of fatty acid and cholesterol metabolism, implicating lipid-metabolic processes driving estrogen-independent growth of ILC cells. Targeting these changes may prove a strategy for prevention and treatment of endocrine resistance for patients with ILC.


Assuntos
Inibidores da Aromatase/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Oxisteróis/farmacologia , Interferência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
19.
Cell Death Differ ; 25(7): 1239-1258, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29651165

RESUMO

Therapy resistance represents a clinical challenge for advanced non-small cell lung cancer (NSCLC), which still remains an incurable disease. There is growing evidence that cancer-initiating or cancer stem cells (CSCs) provide a reservoir of slow-growing dormant populations of cells with tumor-initiating and unlimited self-renewal ability that are left behind by conventional therapies reigniting post-therapy relapse and metastatic dissemination. The metabolic pathways required for the expansion of CSCs are incompletely defined, but their understanding will likely open new therapeutic opportunities. We show here that lung CSCs rely upon oxidative phosphorylation for energy production and survival through the activity of the mitochondrial citrate transporter, SLC25A1. We demonstrate that SLC25A1 plays a key role in maintaining the mitochondrial pool of citrate and redox balance in CSCs, whereas its inhibition leads to reactive oxygen species build-up thereby inhibiting the self-renewal capability of CSCs. Moreover, in different patient-derived tumors, resistance to cisplatin or to epidermal growth factor receptor (EGFR) inhibitor treatment is acquired through SLC25A1-mediated implementation of mitochondrial activity and induction of a stemness phenotype. Hence, a newly identified specific SLC25A1 inhibitor is synthetic lethal with cisplatin or with EGFR inhibitor co-treatment and restores antitumor responses to these agents in vitro and in animal models. These data have potential clinical implications in that they unravel a metabolic vulnerability of drug-resistant lung CSCs, identify a novel SLC25A1 inhibitor and, lastly, provide the first line of evidence that drugs, which block SLC25A1 activity, when employed in combination with selected conventional antitumor agents, lead to a therapeutic benefit.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Transporte de Ânions/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Transportadores de Ânions Orgânicos
20.
Mol Cell Endocrinol ; 471: 105-117, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935545

RESUMO

Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Lobular/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia , Neoplasias da Mama/genética , Carcinoma Lobular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA