Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 10(Pt 2): 125-36, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12606790

RESUMO

Two new soft X-ray scanning transmission microscopes located at the Advanced Light Source (ALS) have been designed, built and commissioned. Interferometer control implemented in both microscopes allows the precise measurement of the transverse position of the zone plate relative to the sample. Long-term positional stability and compensation for transverse displacement during translations of the zone plate have been achieved. The interferometer also provides low-distortion orthogonal x, y imaging. Two different control systems have been developed: a digital control system using standard VXI components at beamline 7.0, and a custom feedback system based on PC AT boards at beamline 5.3.2. Both microscopes are diffraction limited with the resolution set by the quality of the zone plates. Periodic features with 30 nm half period can be resolved with a zone plate that has a 40 nm outermost zone width. One microscope is operating at an undulator beamline (7.0), while the other is operating at a novel dedicated bending-magnet beamline (5.3.2), which is designed specifically to illuminate the microscope. The undulator beamline provides count rates of the order of tens of MHz at high-energy resolution with photon energies of up to about 1000 eV. Although the brightness of a bending-magnet source is about four orders of magnitude smaller than that of an undulator source, photon statistics limited operation with intensities in excess of 3 MHz has been achieved at high energy resolution and high spatial resolution. The design and performance of these microscopes are described.

2.
Ultramicroscopy ; 88(1): 33-49, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11393450

RESUMO

The morphology, size distributions, spatial distributions, and quantitative chemical compositions of co-polymer polyol-reinforcing particles in a polyurethane have been investigated with scanning transmission X-ray microscopy (STXM). A detailed discussion of microscope operating procedures is presented and ways to avoid potential artifacts are discussed. Images at selected photon energies in the C 1s, N 1s and O 1s regions allow unambiguous identification of styrene-acrylonitrile-based (SAN) copolymer and polyisocyanate polyaddition product-based (PIPA) reinforcing particles down to particle sizes at the limit of the spatial resolution (50 nm). Quantitative analysis of the chemical composition of individual reinforcing particles is achieved by fitting C 1s spectra to linear combinations of reference spectra. Regression analyses of sequences of images recorded through the chemically sensitive ranges of the C 1s, N 1s and O 1s spectra are used to generate quantitative compositional maps, which provide a fast and effective means of investigating compositional distributions over a large number of reinforcing particles. The size distribution of all particles determined by STXM is shown to be similar to that determined by TEM. The size distributions of each type of reinforcing particle, which differ considerably, were obtained by analysis of STXM images at chemically selective energies.


Assuntos
Poliuretanos/química , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA