Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Horm Behav ; 114: 104542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226329

RESUMO

Aggression is a behavioral strategy for securing limited resources and its expression is strongly influenced by their presence and value. In particular, males are generally thought to guard females after mating to ward off other males, but the underlying control mechanisms are unknown. Here, we investigated the role of amines on male courtship behavior and its subsequent effect on male-male aggression in crickets (Gryllus bimaculatus). Contrary to the guarding hypothesis, female presence alone had no immediate effect on male-male aggression. Furthermore, confirming studies on other species, prior female contact, but not necessarily courtship or copulation, promoted subsequent male-male aggression in subordinate, but not socially naive crickets. This promoting effect of female contact is transient and slowly wanes after her removal. Selective aminergic receptor antagonists revealed that the promoting effect of prior female contact on male-male aggression is mediated by octopamine (OA), as well as by serotonin (5HT) acting most likely via 5HT1 and/or 5HT7 like receptors. This contrasts the role of 5HT2-like receptors in maintaining reduced aggressiveness after social defeat. Furthermore, while dopamine (DA) is necessary for the recovery of aggression in subordinates after defeat, it appears to play no part in female induced aggression. Male courtship, on the other hand, is selectively promoted by DA and 5HT, again most likely via 5HT1 and/or 5HT7 like receptors, but not by OA. We conclude that OA, DA and 5HT each differentially modulate different aspects of courtship and aggressive behavior in a context specific fashion.


Assuntos
Agressão/efeitos dos fármacos , Corte , Dopamina/farmacologia , Gryllidae/fisiologia , Octopamina/farmacologia , Serotonina/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Feminino , Masculino
2.
iScience ; 12: 53-65, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30677739

RESUMO

Insect locomotion represents a fundamental example of neuronal oscillating circuits generating different motor patterns or gaits by controlling their phase coordination. Walking gaits are assumed to represent stable states of the system, often modeled as coupled oscillators. This view is challenged, however, by recent experimental observations, in which in vitro locust preparations consistently converged to synchronous rhythms (all legs oscillating as one), a locomotive pattern never seen in vivo. To reconcile this inconsistency, we developed a modeling framework to capture the trade-off between the two competing mechanisms: the endogenous neuronal circuitry, expressed in vitro, and the feedback mechanisms from sensory and descending inputs, active only in vivo. We show that the ubiquitously observed double-tripod walking gait emerges precisely from this balance. The outcome is a short-lived meta-stable double-tripod gait, which transitions and alternates with stable idling, thus recovering the observed intermittent bouts of locomotion, typical of many insects' locomotion behavior.

3.
Neurosci Lett ; 692: 77-82, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30391322

RESUMO

Higher motor centers and central pattern generators (CPGs) interact in the control of coordinated leg movements during locomotion throughout the animal kingdom. The subesophageal ganglion (SEG) is one of the insect head ganglia reported to have a role in the control of walking behavior. Here we explored the functional relations between the SEG and the thoracic leg CPGs in the desert locust. Backfill staining revealed about 300 SEG descending interneurons (DINs) altogether. Recordings from an in-vitro isolated chain of thoracic ganglia, with intact or severed connections to the SEG, during pharmacological activation were used to determine how the SEG affects the centrally generated motor output to the legs. The SEG was demonstrated to both activate leg CPGs and synchronize their bilateral activity. The role of the SEG in insect locomotion is discussed in light of these findings.


Assuntos
Geradores de Padrão Central/fisiologia , Gânglios dos Invertebrados/fisiologia , Gafanhotos/fisiologia , Extremidade Inferior/fisiologia , Neurônios Motores/fisiologia , Animais , Interneurônios/fisiologia , Extremidade Inferior/inervação , Masculino , Caminhada
4.
Curr Biol ; 28(22): R1290-R1291, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30458143

RESUMO

Lateralized behaviours are widespread among the animals, including insects with their miniature brains, perhaps being a way of maximising neural capacity (reviewed in [1,2]). However, evidence for functional asymmetries in the neural circuitry itself is scarce. Here, using bilateral simultaneous recordings from the ex vivo nervous system of desert locusts, we show that the neural control of their forelimbs is asymmetric. This asymmetry was retained throughout the experimental period and either with or without the suboesophageal ganglion (SOG). These findings provide evidence for hard-wired neural sidedness and contribute to our understanding of the lateralization observed in in-vivo motor behaviours.


Assuntos
Membro Anterior/fisiologia , Lateralidade Funcional/fisiologia , Gafanhotos/fisiologia , Animais , Encéfalo/fisiologia , Gânglios , Insetos , Sistema Nervoso , Neurônios/fisiologia
5.
Front Behav Neurosci ; 12: 233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349464

RESUMO

In all animals, losers of a conflict against a conspecific exhibit reduced aggressiveness, often coupled with depression-like symptoms, particularly after multiple defeats. While serotonin (5HT) is involved, discovering its natural role in aggression and depression has proven elusive. We show how 5HT influences aggression in male crickets, before, and after single and multiple defeats using serotonergic drugs, at dosages that had no obvious deleterious effect on general motility: the 5HT synthesis inhibitor alpha-methyltryptophan (AMTP), the 5HT2 receptor blocker ketanserin, methiothepin which blocks 5HT receptor subtypes other than 5HT2, 5HT's precursor 5-hydroxytryptophan (5HTP) and re-uptake inhibitor fluoxetine. Contrasting reports for other invertebrates, none of the drugs influenced aggression at the first encounter. However, the recovery of aggression after single defeat, which normally requires 3 h in crickets, was severely affected. Losers that received ketanserin or AMTP regained their aggressiveness sooner, whereas those that received fluoxetine, 5HTP, or methiothepin failed to recover within 3 h. Furthermore, compared to controls, which show long term aggressive depression 24 h after 6 defeats at 1 h intervals, crickets that received AMTP or ketanserin regained their full aggressiveness and were thus more resilient to chronic defeat stress. In contrast, 5HTP and fluoxetine treated crickets showed long term aggressive depression 24 h after only 2 defeats, and were thus more susceptible to defeat stress. We conclude that 5HT acts after social defeat via a 5HT2 like receptor to maintain depressed aggressiveness after defeat, and to promote the susceptibility to and establishment of long-term depression after chronic social defeat. It is known that the decision to flee and establishment of loser depression in crickets is controlled by nitric oxide (NO), whereas dopamine (DA), but not octopamine (OA) is necessary for recovery after defeat. Here we show that blocking NO synthesis, just like ketanserin, affords resilience to multiple defeat stress, whereas blocking DA receptors, but not OA receptors, increases susceptibility, just like fluoxetine. We discuss the possible interplay between 5HT, NO, DA, and OA in controlling aggression after defeat, as well as similarities and differences to findings in mammals and other invertebrate model systems.

6.
PeerJ ; 6: e4356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507823

RESUMO

Studies of mating and reproductive behavior have contributed much to our understanding of various animals' ecological success. The desert locust, Schistocerca gregaria, is an important agricultural pest. However, knowledge of locust courtship and precopulatory behavior is surprisingly limited. Here we provide a comprehensive study of the precopulatory behavior of both sexes of the desert locust in the gregarious phase, with particular emphasis on the conflict between the sexes. Detailed HD-video monitoring of courtship and mating of 20 locust pairs, in a controlled environment, enabled both qualitative and quantitative descriptions of the behavior. A comprehensive list of behavioral elements was used to generate an eight-step ethogram, from first encounter between the sexes to actual copulation. Further analyses included the probability of each element occurring, and a kinematic diagram based on a transitional matrix. Eleven novel behavioral elements are described in this study, and two potential points of conflict between the sexes are identified. Locust sexual interaction was characterized by the dominance of the males during the pre-mounting stage, and an overall stereotypic male courtship behavior. In contrast, females displayed no clear courtship-related behavior and an overall less organized behavioral sequence. Central elements in the sexual behavior of the females were low-amplitude hind-leg vibration, as well as rejecting males by jumping and kicking. Intricate reciprocal interactions between the sexes were evident mostly at the mounting stage. The reported findings contribute important insights to our knowledge of locust mating and reproductive behavior, and may assist in confronting this devastating agricultural pest.

7.
J Insect Physiol ; 107: 116-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577874

RESUMO

The neural control of insect locomotion is distributed among various body segments. Local pattern-generating circuits at the thoracic ganglia interact with incoming sensory signals and central descending commands from the head ganglia. The evidence from different insect preparations suggests that the subesophageal ganglion (SEG) may play an important role in locomotion-related tasks. In a previous study, we demonstrated that the locust SEG modulates the coupling pattern between segmental leg CPGs in the absence of sensory feedback. Here, we investigated its role in processing and transmitting sensory information to the leg motor centers and mapped the major related neural pathways. Specifically, the intra- and inter-segmental transfer of leg-feedback were studied by simultaneously monitoring motor responses and descending signals from the SEG. Our findings reveal a crucial role of the SEG in the transfer of intersegmental, but not intrasegmental, signals. Additional lesion experiments, in which the intersegmental connectives were cut at different locations, together with double nerve staining, indicated that sensory signals are mainly transferred to the SEG via the connective contralateral to the stimulated leg. We therefore suggest that, similar to data reported for vertebrates, insect leg sensory-motor loops comprise contralateral ascending pathways to the head and ipsilateral descending ones.


Assuntos
Gânglios dos Invertebrados/fisiologia , Gafanhotos/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Animais , Neurônios Motores/fisiologia
8.
PLoS One ; 12(9): e0184121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910319

RESUMO

Losing a fight against a conspecific male (social defeat) induces a period of suppressed aggressiveness and general behaviour, often with symptoms common to human psychiatric disorders. Agonistic experience is also discussed as a potential cause of consistent, behavioral differences between individuals (animal "personality"). In non-mammals, however, the impact of single agonistic encounters typically last only hours, but then again studies of repeated intermittent defeat (chronic social defeat) are seldom. We report the effect of chronic social defeat in adult male crickets (Gryllus bimaculatus), for which all known behavioral effects of defeat last only 3 h. Firstly, after 48 h social isolation, crickets that experienced 5 defeats at 24 h intervals against the same, weight-matched opponent exhibited suppressed aggressiveness lasting >24 h, which was still evident when the animals were matched against an unfamiliar opponent at the last trial. Secondly, this longer-term depression of aggression also occurred in 48 h isolated crickets that lost 6 fights at 1 h intervals against unfamiliar opponents at each trial. Thirdly, crickets isolated as larvae until adult maturity (>16 days) were significantly more aggressive, and less variable in their aggressiveness at their very first fight than 48 h isolates, and also significantly more resilient to the effects of chronic social defeat. We conclude that losing an aggressive encounter in crickets has a residual effect, lasting at least 24 h, that accumulates when repeated defeats are experienced, and leads to a prolonged depression of aggressive motivation in subordinates. Furthermore, our data indicate that social interactions between young adults and possibly larvae can have even longer, possibly lifelong influences on subsequent behavior. Social subjugation is thus likely to be a prime determinant of inter-individual behavioral differences in crickets. Our work also opens new avenues for investigating proximate mechanisms underlying depression-like phenomena.


Assuntos
Agressão , Comportamento Animal , Depressão , Gryllidae , Modelos Biológicos , Comportamento Social , Animais , Masculino
9.
Front Behav Neurosci ; 11: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381994

RESUMO

Losing a fight (social defeat) induces submissiveness and behavioral depression in many animals, but the mechanisms are unclear. Here we investigate how the social defeat syndrome can be established as a result of experiencing aversive stimuli and the roles of neuromodulators in the process. While biogenic amines and nitric oxide (NO) are associated with reduced aggression in mammals and insects, their specific actions during conflict are unknown. Although the social defeat syndrome normally results from complex interactions, we could induce it in male crickets simply by applying aversive stimuli (AS) in an aggressive context. Aggressive crickets became immediately submissive and behaved like losers after experiencing two brief AS (light wind puffs to the cerci), but only when preceded by a priming stimulus (PS, stroking the antenna with another male antenna). Notably, submissiveness was not induced when the PS preceded the AS by more than 1 min, or when the PS followed the AS, or using a female antenna as the preceding stimulus. These findings suggest that any potentially detrimental stimulus can acquire the attribute of an aversive agonistic signal when experienced in an aggressive context. Crickets, it seems, need only to evaluate their net sensory impact rather than the qualities of a variety of complex agonistic signals. Selective drug treatments revealed that NO, but not serotonin, dopamine or octopamine, is necessary to establish the submissive status following pairing of the priming and aversive stimuli. Moreover, treatment with an NO donor also induced the social defeat syndrome, but only when combined with the PS. This confirms our hypothesis that aversive agonistic experiences accumulated by crickets during fighting invoke social defeat via the action of NO and illustrates that a relatively simple mechanism underlies the seemingly complex social decision to flee. The simple stimulus regime described here for inducing social defeat opens new avenues for investigating the cellular control of subordinate behavior and post-conflict depression.

10.
Front Neural Circuits ; 10: 112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123358

RESUMO

Many motor behaviors, and specifically locomotion, are the product of an intricate interplay between neuronal oscillators known as central pattern generators (CPGs), descending central commands, and sensory feedback loops. The relative contribution of each of these components to the final behavior determines the trade-off between fixed movements and those that are carefully adapted to the environment. Here we sought to decipher the endogenous, default, motor output of the CPG network controlling the locust legs, in the absence of any sensory or descending influences. We induced rhythmic activity in the leg CPGs in isolated nervous system preparations, using different application procedures of the muscarinic agonist pilocarpine. We found that the three thoracic ganglia, each controlling a pair of legs, have different inherent bilateral coupling. Furthermore, we found that the pharmacological activation of one ganglion is sufficient to induce activity in the other, untreated, ganglia. Each ganglion was thus capable to impart its own bilateral inherent pattern onto the other ganglia via a tight synchrony among the ipsilateral CPGs. By cutting a connective and severing the lateral-longitudinal connections, we were able to uncouple the oscillators' activity. While the bilateral connections demonstrated a high modularity, the ipsilateral CPGs maintained a strict synchronized activity. These findings suggest that the central infrastructure behind locust walking features both rigid elements, which presumably support the generation of stereotypic orchestrated leg movements, and flexible elements, which might provide the central basis for adaptations to the environment and to higher motor commands.


Assuntos
Comportamento Animal/fisiologia , Gânglios dos Invertebrados/fisiologia , Gafanhotos/fisiologia , Extremidade Inferior/fisiologia , Atividade Motora/fisiologia , Animais , Extremidade Inferior/inervação , Masculino
11.
Curr Zool ; 62(3): 265-275, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29491914

RESUMO

Aggression is a common behavioral strategy employed by animals to secure limited resources, but must be applied with restraint to limit potential costs including injury. How animals make the adaptive decision to fight or flee is barely known. Here, we review our work on crickets that reveals the roles of biogenic amines, primarily octopamine (the insect analog of noradrenaline) and nitric oxide (NO). Using aminergic drugs, we found that amines are not essential for actually initiating aggression. However, octopamine is necessary for mediating the aggression-promoting effects of potentially rewarding experiences including stimulation with a male antenna, physical exertion, winning, and resource possession. Hence, octopamine can be considered as the motivational component of aggression. Imposed handicaps that impede aggressive signaling revealed that the agonistic actions of an opponent perceived during fighting act to reduce aggression, and that crickets make the decision to flee the moment the accumulated sum of such aversive experiences exceeds some critical level. Treatment with nitridergic drugs revealed that the impact of the opponent's aggressive actions is mediated by NO. NO acts to suppress aggression by promoting the tendency to flee and is primarily responsible for the depressed aggressiveness of subordinates after social defeat. Octopamine and dopamine can each restore aggression in subordinates, but only dopamine is necessary for normal recovery. The role of serotonin remains unclear, and is discussed. We conclude that octopamine and NO control the decision to fight or flee by mediating the effects of potentially rewarding and aversive experiences, respectively.

12.
Sci Adv ; 1(2): e1500060, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26601155

RESUMO

Fighting is dangerous, which is why animals choose to flee once the costs outweigh the benefits, but the mechanisms underlying this decision-making process are unknown. By manipulating aggressive signaling and applying nitrergic drugs, we show that the evolutionarily conserved neuromodulator nitric oxide (NO), which has a suppressing effect on aggression in mammals, can play a decisive role. We found that crickets, which exhibit spectacular fighting behavior, flee once the sum of their opponent's aversive actions accrued during fighting exceeds a critical amount. This effect of aversive experience is mediated by the NO signaling pathway. Rather than suppressing aggressive motivation, NO increases susceptibility to aversive stimuli and with it the likelihood to flee. NO's effect is manifested in losers by prolonged avoidance behavior, characteristic for social defeat in numerous species. Intriguingly, fighting experience also induces, via NO, a brief susceptible period to aversive stimuli in winners just after victory. Our findings thus reveal a key role for NO in the mechanism underlying the decision to flee and post-conflict depression in aggressive behavior.

13.
Front Behav Neurosci ; 9: 95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954171

RESUMO

Biogenic amines have widespread effects on numerous behaviors, but their natural functions are often unclear. We investigated the role of octopamine (OA), the invertebrate analog of noradrenaline, on initiation and maintenance of aggression in male crickets of different social status. The key-releasing stimulus for aggression is antennal fencing between males, a behavior occurring naturally on initial contact. We show that mechanical antennal stimulation (AS) alone is sufficient to initiate an aggressive response (mandible threat display). The efficacy of AS as an aggression releasing stimulus was augmented in winners of a previous fight, but unaffected in losers. The efficacy of AS was not, however, influenced by OA receptor (OAR) agonists or antagonists, regardless of social status. Additional experiments indicate that the efficacy of AS is also not influenced by dopamine (DA) or serotonin (5HT). In addition to initiating an aggressive response, prior AS enhanced aggression exhibited in subsequent fights, whereby AS with a male antenna was now necessary, indicating a role for male contact pheromones. This priming effect of male-AS on subsequent aggression was dependent on OA since it was blocked by OAR-antagonists, and enhanced by OAR-agonists. Together our data reveal that neither OA, DA nor 5HT are required for initiating aggression in crickets, nor do these amines influence the efficacy of the natural releasing stimulus to initiate aggression. OA's natural function is restricted to promoting escalation and maintenance of aggression once initiated, and this can be invoked by numerous experiences, including prior contact with a male antenna as shown here.

14.
Horm Behav ; 66(4): 696-704, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25268421

RESUMO

Social defeat, i.e. losing an agonistic dispute with a conspecific, is followed by a period of suppressed aggressiveness in many animal species, and is generally regarded as a major stressor, which may play a role in psychiatric disorders such as depression and post-traumatic stress disorder. Despite numerous animal models, the mechanisms underlying loser depression and subsequent recovery are largely unknown. This study on crickets is the first to show that a neuromodulator, dopamine (DA), is necessary for recovery of aggression after social defeat. Crickets avoid any conspecific male just after defeat, but regain their aggressiveness over 3 h. This recovery was prohibited after depleting nervous stores of DA and octopamine (OA, the invertebrate analogue of noradrenaline) with α-methyl-tyrosine (AMT). Loser recovery was also prohibited by the insect DA-receptor (DAR) antagonist fluphenazine, but not the OA-receptor (OAR) blocker epinastine, or yohimbine, which blocks receptors for OA's precursor tyramine. Conversely, aggression was restored prematurely in both untreated and amine depleted losers given either chlordimeform (CDM), a tissue permeable OAR-agonist, or the DA-metabolite homovanillyl alcohol (HVA), a component of the honeybee queen mandibular pheromone. As in honeybees, HVA acts in crickets as a DAR-agonist since its aggression promoting effect on losers was selectively blocked by the DAR-antagonist, but not by the OAR-antagonist. Conversely, CDM's aggression promoting effect was selectively blocked by the OAR-antagonist, but not the DAR-antagonist. Hence, only DA is necessary for recovery of aggressiveness after social defeat, although OA can promote loser aggression independently to enable experience dependent adaptive responses.


Assuntos
Adaptação Psicológica/efeitos dos fármacos , Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Dopamina/farmacologia , Gryllidae , Agressão/fisiologia , Animais , Comportamento Animal/fisiologia , Comportamento Competitivo/efeitos dos fármacos , Dibenzazepinas/farmacologia , Dominação-Subordinação , Gryllidae/efeitos dos fármacos , Gryllidae/fisiologia , Imidazóis/farmacologia , Masculino , Octopamina/farmacologia
15.
PLoS One ; 8(9): e74965, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040368

RESUMO

Population density has profound influences on the physiology and behaviour of many animal species. Social isolation is generally reported to lead to increased aggressiveness, while grouping lowers it. We evaluated the effects of varying degrees of isolation and grouping on aggression in a territorial insect, the Mediterranean field cricket, Gryllus bimaculatus. Substantiating early observations, we show that dyadic contests between weight-matched, adult male crickets taken from groups rarely escalate beyond threat displays, whereas interactions between pairs of previously isolated crickets typically escalate to physical fights lasting several seconds. No significant differences were found between 1, 2 and 6-day isolates, or between individuals grouped for a few hours or lifelong. Unexpectedly, crickets grouped in immediate proximity within individual mesh cages that precluded fighting while permitting visual, olfactory and mechanical, antennal contact, were as aggressive as free isolates. This suggests that reduced aggression of grouped animals may be an acquired result of fighting. Supporting this notion, isolated crickets initially engage in vigorous fights when first grouped, but fighting intensity and duration rapidly decline to the level of life-long grouped crickets within only 10 min. Furthermore, grouped crickets become as aggressive as life-long isolates after only 3 hours of isolation, and on the same time course required for crickets to regain their aggressiveness after social defeat. We conclude that the reduced aggressiveness of grouped crickets is a manifestation of the loser effect resulting from social subjugation, while isolation allows recovery to a state of heightened aggressiveness, which in crickets can be considered as the default condition. Given the widespread occurrence of the loser effect in the Animal Kingdom, many effects generally attributed to social isolation are likely to be a consequence of recovery from social subjugation.


Assuntos
Agressão/fisiologia , Comportamento Animal , Gryllidae/fisiologia , Territorialidade , Animais , Feminino , Masculino , Densidade Demográfica , Predomínio Social , Fatores de Tempo
16.
PLoS One ; 8(5): e62899, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671643

RESUMO

Walking and flying in locusts are exemplary rhythmical behaviors generated by central pattern generators (CPG) that are tuned in intact animals by phasic sensory inputs. Although these two behaviors are mutually exclusive and controlled by independent CPGs, leg movements during flight can be coupled to the flight rhythm. To investigate potential central coupling between the underlying CPGs, we used the muscarinic agonist pilocarpine and the amines octopamine and tyramine to initiate fictive flight and walking in deafferented locust preparations. Our data illustrate that fictive walking is readily evoked by comparatively lower concentrations of pilocarpine, whereas higher concentrations are required to elicit fictive flight. Interestingly, fictive flight did not suppress fictive walking so that the two patterns were produced simultaneously. Frequently, leg motor units were temporally coupled to the flight rhythm, so that each spike in a step cycle volley occurred synchronously with wing motor units firing at flight rhythm frequency. Similarly, tyramine also induced fictive walking and flight, but mostly without any coupling between the two rhythms. Octopamine in contrast readily evoked fictive flight but generally failed to elicit fictive walking. Despite this, numerous leg motor units were recruited, whereby each was temporarily coupled to the flight rhythm. Our results support the notion that the CPGs for walking and flight are largely independent, but that coupling can be entrained by aminergic modulation. We speculate that octopamine biases the whole motor machinery of a locust to flight whereas tyramine primarily promotes walking.


Assuntos
Aminas/farmacologia , Voo Animal/fisiologia , Gafanhotos/efeitos dos fármacos , Pilocarpina/farmacologia , Caminhada/fisiologia , Animais , Gafanhotos/fisiologia , Membro Posterior/inervação , Membro Posterior/fisiologia , Modelos Biológicos , Atividade Motora/fisiologia , Agonistas Muscarínicos/farmacologia , Músculos/inervação , Músculos/fisiologia , Octopamina/farmacologia , Periodicidade , Fatores de Tempo , Tiramina/farmacologia , Asas de Animais/inervação , Asas de Animais/fisiologia
17.
Front Neurosci ; 6: 118, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936896

RESUMO

Ritualized fighting between conspecifics is an inherently dangerous behavioral strategy, optimized to secure limited resources at minimal cost and risk. To be adaptive, potential rewards, and costs of aggression must be assessed to decide when it would be more opportune to fight or flee. We summarize insights into the proximate mechanisms underlying this decision-making process in field crickets. As in other animals, cricket aggression is enhanced dramatically by motor activity, winning, and the possession of resources. Pharmacological manipulations provide evidence that these cases of experience dependent enhancement of aggression are each mediated by octopamine, the invertebrate counterpart to adrenaline/noradrenaline. The data suggest that both physical exertion and rewarding aspects of experiences can activate the octopaminergic system, which increases the propensity to fight. Octopamine thus represents the motivational component of aggression in insects. For the decision to flee, animals are thought to assess information from agonistic signals exchanged during fighting. Cricket fights conform to the cumulative assessment model, in that they persist in fighting until the sum of their opponent's actions accumulates to some threshold at which they withdraw. We discuss evidence that serotonin, nitric oxide, and some neuropeptides may promote an insect's tendency to flee. We propose that the decision to fight or flee in crickets is controlled simply by relative behavioral thresholds. Rewarding experiences increase the propensity to fight to a level determined by the modulatory action of octopamine. The animal will then flee only when the accumulated sum of the opponent's actions surpasses this level; serotonin and nitric oxide may be involved in this process. This concept is in line with the roles proposed for noradrenaline, serotonin, and nitric oxide in mammals and suggests that basic mechanisms of aggressive modulation may be conserved in phylogeny.

18.
Proc Biol Sci ; 278(1713): 1873-80, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21106592

RESUMO

Aggression is a behavioural strategy for securing resources (food, mates and territory) and its expression is strongly influenced by their presence and value. While it is known that resource holders are generally highly aggressive towards intruding consexuals and usually defeat them, the underlying neuronal mechanisms are not known. In a novel intruder-resident paradigm for field crickets (Gryllus bimaculatus), we show that otherwise submissive losers of a preceding aggressive encounter readily fight and often defeat aggressive winners after occupying an artificial shelter. This aggression enhancing effect first became evident after 2 min residency, and was maximal after 15 min, but absent 15 min after shelter removal. The residency effect was abolished following non-selective depletion of biogenic amines from the central nervous system using reserpine, or semi-selective depletion of octopamine and dopamine using α-methyl-tyrosine, but not following serotonin depletion using α-methyl-tryptophan. The residency effect was also abolished by the treatment with phentolamine, an α-adrenergic receptor antagonist, or epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, or by yohimbine, an insect tyramine receptor blocker. We conclude that crickets evaluate residency as a rewarding experience that promotes aggressive motivation via a mechanism involving octopamine, the invertebrate analogue of noradrenaline.


Assuntos
Aminas Biogênicas/metabolismo , Gryllidae/fisiologia , Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Agressão , Animais , Comportamento Animal , Gryllidae/efeitos dos fármacos , Octopamina/metabolismo , Fatores de Tempo
19.
PLoS One ; 6(12): e28891, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216137

RESUMO

Winning an agonistic interaction against a conspecific is known to heighten aggressiveness, but the underlying events and mechanism are poorly understood. We quantified the effect of experiencing successive wins on aggression in adult male crickets (Gryllus bimaculatus) by staging knockout tournaments and investigated its dependence on biogenic amines by treatment with amine receptor antagonists. For an inter-fight interval of 5 min, fights between winners escalated to higher levels of aggression and lasted significantly longer than the preceding round. This winner effect is transient, and no longer evident for an inter-fight interval of 20 min, indicating that it does not result from selecting individuals that were hyper-aggressive from the outset. A winner effect was also evident in crickets that experienced wins without physical exertion, or that engaged in fights that were interrupted before a win was experienced. Finally, the winner effect was abolished by prior treatment with epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, nor by yohimbine, an insect tyramine receptor blocker nor by fluphenazine an insect dopamine-receptor blocker. Taken together our study in the cricket indicates that the physical exertion of fighting, together with some rewarding aspect of the actual winning experience, leads to a transient increase in aggressive motivation via activation of the octopaminergic system, the invertebrate equivalent to the adrenergic system of vertebrates.


Assuntos
Agressão , Comportamento Animal , Gryllidae/fisiologia , Octopamina/fisiologia , Animais , Masculino
20.
J Neurochem ; 115(2): 483-92, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20698931

RESUMO

The NAD(+)/NADH redox pair constitutes an important metabolic node connecting catabolic pathways to energy production. We took advantage of the fluorescence of NADH to monitor changes in NADH levels by 2-photon laser scanning microscopy in cultured cortical astrocytes and acutely isolated brain slices in response to dopamine (DA), a major neurotransmitter involved in modulation of attention, motivation, and learning. DA induced a dose-dependent biphasic response of the NAD(P)H fluorescence signal, consisting of an initial decrease followed by a subsequent increase. This response was mediated by D1-receptors, protein kinase A, and 5'-AMP-activated protein kinase signaling. While the initial decrease could be inhibited by blocking mitochondrial respiratory chain, the increase was inhibited by blocking glycolysis. Finally, activation of DA receptors on astrocytes in acutely isolated mouse cortical brain slices also induced an increase in the NAD(P)H fluorescence signal. We conclude that DA activates two opposing components of astrocytic metabolism with different kinetics. This response of the astroglial metabolism might contribute to fine-tuned participation of astrocytes to neuronal activity and functional states of the brain.


Assuntos
Astrócitos/efeitos dos fármacos , Dopamina/farmacologia , Glicólise/efeitos dos fármacos , NAD/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Células Cultivadas , Córtex Cerebral/citologia , Colforsina/farmacologia , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Fluorescência , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Ácido Láctico/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal/métodos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA