Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Inherit Metab Dis ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390655

RESUMO

Phenylketonuria (PKU) is a congenital metabolic disorder that causes the systemic elevation of phenylalanine (Phe), which is neurotoxic and teratogenic. PKU is currently incurable, and management involves lifelong adherence to an unpalatable protein-restricted diet based on Phe-free amino acid mixtures. Seeking a palatable dietary alternative, we identified a Bacillus subtilis protein (GSP16O) with a well-balanced but low-Phe amino acid profile. We optimized the sequence and expressed a modified Phe-free version (GSP105) in Pseudomonas fluorescens, achieving yields of 20 g/L. The purified GSP105 protein has a neutral taste and smell, is highly soluble, and remains stable up to 80°C. Homozygous enu2 mice, a model of human PKU, were fed with diets containing either GSP105 or normal protein. The GSP105 diet led to normalization of blood Phe levels and brain monoamine neurotransmitter metabolites, and prevented maternal PKU. The GSP105 diet thus provides an alternative and efficacious dietary management strategy for PKU.

2.
Mol Ther Methods Clin Dev ; 27: 352-367, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381301

RESUMO

Hydrodynamic tail vein injection (HTV) is the "gold standard" for delivering naked DNA vectors to mouse liver, thereby transfecting predominately perivenous hepatocytes. While HTV corrects metabolic liver defects such as phenylketonuria or cystathionine ß-synthase deficiency, correction of spf ash mice with ornithine transcarbamylase (OTC) deficiency was not possible despite overexpression in the liver, as the OTC enzyme is primarily expressed in periportal hepatocytes. To target periportal hepatocytes, we established hydrodynamic retrograde intrabiliary injection (HRII) in mice and optimized minicircle (MC) vector delivery using luciferase as a marker gene. HRII resulted in a transfection efficiency below 1%, 100-fold lower than HTV. While HRII induced minimal liver toxicity compared with HTV, overexpression of luciferase by both methods, but not of a natural liver-specific enzyme, elicited an immune response that led to the elimination of luciferase expression. Further testing of MC vectors delivered via HRII in spf ash mice did not result in sufficient therapeutic efficacy and needs further optimization and/or selection of the corrected cells. This study reveals that luciferase expression is toxic for the liver. Furthermore, physical delivery of MC vectors via the bile duct has the potential to treat defects restricted to periportal hepatocytes, which opens new doors for non-viral liver-directed gene therapy.

3.
Mol Genet Metab ; 137(1-2): 9-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35868243

RESUMO

BACKGROUND: Tyrosinemia type 1 (HT1) is a rare metabolic disorder caused by a defect in the tyrosine catabolic pathway. Since HT1 patients are treated with NTBC, outcome improved and life expectancy greatly increased. However extensive neurocognitive and behavioural problems have been described, which might be related to treatment with NTBC, the biochemical changes induced by NTBC, or metabolites accumulating due to the enzymatic defect characterizing the disease. OBJECTIVE: To study the possible pathophysiological mechanisms of brain dysfunction in HT1, we assessed blood and brain LNAA, and brain monoamine neurotransmitter metabolite levels in relation to behavioural and cognitive performance of HT1 mice. DESIGN: C57BL/6 littermates were divided in three different experimental groups: HT1, heterozygous and wild-type mice (n = 10; 5 male). All groups were treated with NTBC and underwent cognitive and behavioural testing. One week after behavioural testing, blood and brain material were collected to measure amino acid profiles and brain monoaminergic neurotransmitter levels. RESULTS: Irrespective of the genetic background, NTBC treatment resulted in a clear increase in brain tyrosine levels, whereas all other brain LNAA levels tended to be lower than their reference values. Despite these changes in blood and brain biochemistry, no significant differences in brain monoamine neurotransmitter (metabolites) were found and all mice showed normal behaviour and learning and memory. CONCLUSION: Despite the biochemical changes, NTBC and genotype of the mice were not associated with poorer behavioural and cognitive function of the mice. Further research involving dietary treatment of FAH-/- are warranted to investigate whether this reveals the cognitive impairments that have been seen in treated HT1 patients.


Assuntos
Nitrobenzoatos , Tirosinemias , Animais , Camundongos , Masculino , Cicloexanonas , Camundongos Endogâmicos C57BL , Tirosinemias/tratamento farmacológico , Tirosinemias/genética , Tirosina/metabolismo
4.
Mol Genet Metab ; 136(1): 46-64, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339387

RESUMO

Existing phenylalanine hydroxylase (PAH)-deficient mice strains are useful models of untreated or late-treated human phenylketonuria (PKU), as most contemporary therapies can only be initiated after weaning and the pups have already suffered irreversible consequences of chronic hyperphenylalaninemia (HPA) during early brain development. Therefore, we sought to evaluate whether enzyme substitution therapy with pegvaliase initiated near birth and administered repetitively to C57Bl/6-Pahenu2/enu2 mice would prevent HPA-related behavioral and cognitive deficits and form a model for early-treated PKU. The main results of three reported experiments are: 1) lifelong weekly pegvaliase treatment prevented the cognitive deficits associated with HPA in contrast to persisting deficits in mice treated with pegvaliase only as adults. 2) Cognitive deficits reappear in mice treated with weekly pegvaliase from birth but in which pegvaliase is discontinued at 3 months age. 3) Twice weekly pegvaliase injection also prevented cognitive deficits but again cognitive deficits emerged in early-treated animals following discontinuation of pegvaliase treatment during adulthood, particularly in females. In all studies, pegvaliase treatment was associated with complete correction of brain monoamine neurotransmitter content and with improved overall growth of the mice as measured by body weight. Mean total brain weight however remained low in all PAH deficient mice regardless of treatment. Application of enzyme substitution therapy with pegvaliase, initiated near birth and continued into adulthood, to PAH-deficient Pahenu2/enu2 mice models contemporary early-treated human PKU. This model will be useful for exploring the differential pathophysiologic effects of HPA at different developmental stages of the murine brain.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Adulto , Animais , Cognição , Dieta , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina , Fenilalanina Amônia-Liase , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/tratamento farmacológico , Proteínas Recombinantes
5.
Sci Transl Med ; 14(636): eabl9238, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294257

RESUMO

Prime editing is a highly versatile CRISPR-based genome editing technology that works without DNA double-strand break formation. Despite rapid technological advances, in vivo application for the treatment of genetic diseases remains challenging. Here, we developed a size-reduced SpCas9 prime editor (PE) lacking the RNaseH domain (PE2ΔRnH) and an intein-split construct (PE2 p.1153) for adeno-associated virus-mediated delivery into the liver. Editing efficiencies reached 15% at the Dnmt1 locus and were further elevated to 58% by delivering unsplit PE2ΔRnH via human adenoviral vector 5 (AdV). To provide proof of concept for correcting a genetic liver disease, we used the AdV approach for repairing the disease-causing Pahenu2 mutation in a mouse model of phenylketonuria (PKU) via prime editing. Average correction efficiencies of 11.1% (up to 17.4%) in neonates led to therapeutic reduction of blood phenylalanine, without inducing detectable off-target mutations or prolonged liver inflammation. Although the current in vivo prime editing approach for PKU has limitations for clinical application due to the requirement of high vector doses (7 × 1014 vg/kg) and the induction of immune responses to the vector and the PE, further development of the technology may lead to curative therapies for PKU and other genetic liver diseases.


Assuntos
Hepatopatias , Fenilcetonúrias , Animais , Dependovirus/genética , Dependovirus/metabolismo , Edição de Genes , Hepatopatias/genética , Hepatopatias/terapia , Camundongos , Fenilcetonúrias/genética , Fenilcetonúrias/terapia
6.
Mol Ther Methods Clin Dev ; 24: 268-279, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35211639

RESUMO

Hepatic gene therapy by delivering non-integrating therapeutic vectors in newborns remains challenging due to the risk of dilution and loss of efficacy in the growing liver. Previously we reported on hepatocyte transfection in piglets by intraportal injection of naked DNA vectors. Here, we established delivery of naked DNA vectors to target periportal hepatocytes in weaned pigs by hydrodynamic retrograde intrabiliary injection (HRII). The surgical procedure involved laparotomy and transient isolation of the liver. For vector delivery, a catheter was placed within the common bile duct by enterotomy. Under optimal conditions, no histological abnormalities were observed in liver tissue upon pressurized injections. The transfection of hepatocytes in all tested liver samples was observed with vectors expressing luciferase from a liver-specific promoter. However, vector copy number and luciferase expression were low compared to hydrodynamic intraportal injection. A 10-fold higher number of vector genomes and luciferase expression was observed in pigs using a non-integrating naked DNA vector with the potential for replication. In summary, the HRII application was less efficient (i.e., lower luciferase activity and vector copy numbers) than the intraportal delivery method but was significantly less distressful for the piglets and has the potential for injection (or re-injection) of vector DNA by endoscopic retrograde cholangiopancreatography.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34740032

RESUMO

Obesity leads to chronic inflammation of the adipose tissue which is tightly associated with the metabolic syndrome, type 2 diabetes and cardiovascular disease. Inflammation of the adipose tissue is mainly characterized by the presence of crown-like structures composed of inflammatory macrophages in the neighborhood of adipocytes. Resolvin D1 (RvD1), a potent anti-inflammatory and pro-resolving lipid mediator derived from the omega-3 fatty acid docosahexaenoic acid, has been shown to reduce the inflammatory tone of adipose tissue in animal models but the underlying mechanism is not clear. We investigated the effect of RvD1 on the inflammatory state of a human co-culture system of adipocytes and macrophages. For this, human mesenchymal stem cells were differentiated into mature adipocytes and overlaid with human primary macrophages. In this co-culture, 10-500 nM RvD1 dose-dependently reduced the secretion of the pro-inflammatory cytokine IL-6 (-21%) and its soluble receptor IL-6Rα (-22%), of the chemokine MCP-1 (-13%), and of the adipokine leptin (-22%). Similarly, we observed a reduction in secretion of the soluble receptor IL-6Rα (-20%), and TNF-α (-11%) when macrophages alone were treated with RvD1, while no change of cytokine secretion was observed when adipocytes were treated with RvD1. We conclude that RvD1 polarizes macrophages to an anti-inflammatory phenotype, which in turn modulates inflammation in adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/métodos , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Leptina/metabolismo , Células-Tronco Mesenquimais/citologia , Obesidade/metabolismo , Fenótipo
8.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484963

RESUMO

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Assuntos
Edição de Genes/métodos , Hepatócitos/transplante , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Ornitina Carbamoiltransferase/genética , Adulto , Idoso , Amônia/metabolismo , Animais , Células Cultivadas , Criança , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hepatócitos/química , Hepatócitos/citologia , Humanos , Íntrons , Masculino , Camundongos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ácido Orótico/urina , Splicing de RNA
9.
Mol Genet Metab ; 131(3): 306-315, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051130

RESUMO

Phenylalanine hydroxylase (PAH) deficiency, colloquially known as phenylketonuria (PKU), is among the most common inborn errors of metabolism and in the past decade has become a target for the development of novel therapeutics such as gene therapy. PAH deficient mouse models have been key to new treatment development, but all prior existing models natively express liver PAH polypeptide as inactive or partially active PAH monomers, which complicates the experimental assessment of protein expression following therapeutic gene, mRNA, protein, or cell transfer. The mutant PAH monomers are able to form hetero-tetramers with and inhibit the overall holoenzyme activity of wild type PAH monomers produced from a therapeutic vector. Preclinical therapeutic studies would benefit from a PKU model that completely lacks both PAH activity and protein expression in liver. In this study, we employed CRISPR/Cas9-mediated gene editing in fertilized mouse embryos to generate a novel mouse model that lacks exon 1 of the Pah gene. Mice that are homozygous for the Pah exon 1 deletion are viable, severely hyperphenylalaninemic, accurately replicate phenotypic features of untreated human classical PKU and lack any detectable liver PAH activity or protein. This model of classical PKU is ideal for further development of gene and cell biologics to treat PKU.


Assuntos
Fígado/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina/genética , Fenilcetonúrias/terapia , Animais , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Éxons/genética , Edição de Genes , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/farmacologia , Fenilcetonúrias/genética , Fenilcetonúrias/patologia
10.
J Inherit Metab Dis ; 42(6): 1064-1076, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30714172

RESUMO

The most common ureagenesis defect is X-linked ornithine transcarbamylase (OTC) deficiency which is a main target for novel therapeutic interventions. The spf ash mouse model carries a variant (c.386G>A, p.Arg129His) that is also found in patients. Male spf ash mice have a mild biochemical phenotype with low OTC activity (5%-10% of wild-type), resulting in elevated urinary orotic acid but no hyperammonemia. We recently established a dried blood spot method for in vivo quantification of ureagenesis by Gas chromatography-mass spectrometry (GC-MS) using stable isotopes. Here, we applied this assay to wild-type and spf ash mice to assess ureagenesis at different ages. Unexpectedly, we found an age-dependency with a higher capacity for ammonia detoxification in young mice after weaning. A parallel pattern was observed for carbamoylphosphate synthetase 1 and OTC enzyme expression and activities, which may act as pacemaker of this ammonia detoxification pathway. Moreover, high ureagenesis in younger mice was accompanied by elevated periportal expression of hepatic glutamine synthetase, another main enzyme required for ammonia detoxification. These observations led us to perform a more extensive analysis of the spf ash mouse in comparison to the wild-type, including characterization of the corresponding metabolites, enzyme activities in the liver and plasma and the gut microbiota. In conclusion, the comprehensive enzymatic and metabolic analysis of ureagenesis performed in the presented depth was only possible in animals. Our findings suggest such analyses being essential when using the mouse as a model and revealed age-dependent activity of ammonia detoxification.


Assuntos
Envelhecimento/fisiologia , Amônia/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/patologia , Ornitina Carbamoiltransferase/genética , Ureia/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética
11.
J Immunol ; 196(8): 3429-37, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969756

RESUMO

Resolvin D1 (RvD1) was shown to be a potent anti-inflammatory and proresolution lipid mediator in several animal models of inflammation, but its mechanism of action in humans is not clear. We show that the RvD1 receptor GPR32 is present on resting, proinflammatory M(LPS) and alternatively activated primary human M(IL-4) macrophages, whereas TGF-ß and IL-6 reduce its membrane expression. Accordingly, stimulation of resting primary human macrophages with 10 nM RvD1 for 48 h maximally reduced the secretion of the proinflammatory cytokines IL-1ß and IL-8; abolished chemotaxis to several chemoattractants like chemerin, fMLF, and MCP-1; and doubled the phagocytic activity of these macrophages toward microbial particles. In contrast, these functional changes were not accompanied by surface expression of markers specific for alternatively activated M(IL-4) macrophages. Similar proresolution effects of RvD1 were observed when proinflammatory M(LPS) macrophages were treated with RvD1. In addition, we show that these RvD1-mediated effects are GPR32 dependent because reduction of GPR32 expression by small interfering RNA, TGF-ß, and IL-6 treatment ablated these proresolution effects in primary human macrophages. Taken together, our results indicate that in humans RvD1 triggers GPR32 to polarize and repolarize macrophages toward a proresolution phenotype, supporting the role of this mediator in the resolution of inflammation in humans.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Inibição de Migração Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Humanos , Inflamação/imunologia , Interleucina-1beta/biossíntese , Interleucina-6/imunologia , Interleucina-8/biossíntese , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA