RESUMO
The study of RNA dynamics, specifically RNA transcription and decay rates, has gained increasing attention in recent years because various mechanisms have been discovered that affect mRNA half-life, thereby ultimately controlling protein output. Therefore, there is a need for methods enabling minimally invasive, simple and high-throughput determination of RNA stability that can be applied to determine RNA transcription and decay rates in cells and organisms. We have recently developed a protocol which we named TUC-seq to directly distinguish newly synthesized transcripts from the preexisting pool of transcripts by metabolic labeling of nascent RNAs with 4-thiouridine (4sU) followed by osmium tetroxide-mediated conversion of 4sU to cytidine (C) and direct sequencing. In contrast to other related methods (SLAM-seq, TimeLapse-seq), TUC-seq converts 4sU to a native C instead of an alkylated or otherwise modified nucleoside derivative. TUC-seq can be applied to any cell type that is amenable to 4sU labeling. By employing different labeling strategies (pulse or pulse-chase labeling), it is suitable for a broad field of applications and provides a fast and highly efficient means to determine mRNA transcription and decay rates.
Assuntos
Citidina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estabilidade de RNA/genética , RNA Mensageiro/genética , Tiouridina/metabolismo , Transcrição Gênica/genética , Linhagem Celular , Células HEK293 , Humanos , Análise de Sequência de RNA/métodos , Coloração e Rotulagem/métodosRESUMO
To understand the functional roles of RNA in the cell, it is essential to elucidate the dynamics of their production, processing and decay. A recent method for assessing mRNA dynamics is metabolic labeling with 4-thiouridine (4sU), followed by thio-selective attachment of affinity tags. Detection of labeled transcripts by affinity purification and hybridization to microarrays or by deep sequencing then reveals RNA expression levels. Here, we present a novel sequencing method (TUC-seq) that eliminates affinity purification and allows for direct assessment of 4sU-labeled RNA. It employs an OsO4 -mediated transformation to convert 4sU into cytosine. We exemplify the utility of the new method for verification of endogenous 4sU in tRNAs and for the detection of pulse-labeled mRNA of seven selected genes in mammalian cells to determine the relative abundance of the new transcripts. The results prove TUC-seq as a straight-forward and highly versatile method for studies of cellular RNA dynamics.
Assuntos
Citidina/química , Osmio/química , RNA/química , Tiouridina/química , Cloreto de Amônio/química , Cromatografia por Troca Iônica , Células HEK293 , Humanos , RNA/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas por Ionização por Electrospray , TemperaturaRESUMO
5-Hydroxymethylcytosine (hm5C) is an RNA modification that has attracted significant interest because of the finding that RNA hydroxymethylation can favor mRNA translation. For insight into the mechanistic details of hm5C function to be obtained, the availability of RNAs containing this modification at defined positions that can be used for in vitro studies is highly desirable. In this work, we present an eight-step route to 5-hydroxymethylcytidine (hm5rC) phosphoramidite for solid-phase synthesis of modified RNA oligonucleotides. Furthermore, we examined the effects of hm5rC on RNA duplex stability and its impact on structure formation using the sarcin-ricin loop (SRL) motif. Thermal denaturation experiments revealed that hm5rC increases RNA duplex stability. By contrast, when cytosine within an UNCG tetraloop motif was replaced by hm5rC, the thermodynamic stability of the corresponding hairpin fold was attenuated. Importantly, incorporation of hm5rC into the SRL motif resulted in an RNA crystal structure at 0.85 Å resolution. Besides changes in the hydration pattern at the site of modification, a slight opening of the hm5rC-G pair compared to the unmodified C-G in the native structure was revealed.
Assuntos
5-Metilcitosina/análogos & derivados , Oligonucleotídeos/química , RNA/química , Termodinâmica , 5-Metilcitosina/química , Configuração de Carboidratos , Cristalografia por Raios X , Modelos MolecularesRESUMO
Nucleobase methylations are ubiquitous posttranscriptional modifications of ribonucleic acids (RNA) that can substantially increase the structural diversity of RNA in a highly dynamic fashion with implications for gene expression and human disease. However, high throughput, deep sequencing does not generally provide information on posttranscriptional modifications (PTMs). A promising alternative approach for the characterization of PTMs, i.e. their identification, localization, and relative quantitation, is top-down mass spectrometry (MS). In this study, we have investigated how specific nucleobase methylations affect RNA ionization in electrospray ionization (ESI), and backbone cleavage in collisionally activated dissociation (CAD) and electron detachment dissociation (EDD). For this purpose, we have developed two new approaches for the characterization of RNA methylations in mixtures of either isomers of RNA or nonisomeric RNA forms. Fragment ions from dissociation experiments were analyzed to identify the modification type, to localize the modification sites, and to reveal the site-specific, relative extent of modification for each site.
Assuntos
RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Sequência de Bases , Citidina/análogos & derivados , Citidina/análise , Citidina/química , Íons , Metilação , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Uridina/análogos & derivados , Uridina/análise , Uridina/químicaRESUMO
5-Hydroxymethylcytosine is an epigenetic base modification that is part of the demethylation pathway of 5-methylcytosine in DNA. 5-Methylcytosine is iteratively oxidized to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine by enzymes of the TET protein family. Since the discovery of 5-hydroxymethylcytosine also in RNA its role in regulatory processes and metabolism remains elusive. To gain more insight into the function of RNA containing 5-hydroxymethylcytidine, innovative and interdisciplinary approaches are required. In this context, synthetic oligoribonucleotides containing 5-hyroxymethylcytidine are an inevitable tool. Therefore, in this chapter, we present the efficient synthesis of RNA oligonucleotides containing 5-hydroxymethylcytosine by solid-phase synthesis. The incorporation of the modified cytosine derivative into RNA is compatible with standard phosphoramidite-based synthesis procedures of oligoribonucleotides.
Assuntos
5-Metilcitosina/análogos & derivados , RNA/química , Técnicas de Síntese em Fase Sólida , 5-Metilcitosina/química , Epigênese Genética , Metilação , RNA/síntese química , RNA/isolamento & purificaçãoRESUMO
BACKGROUND: Recent work has identified and mapped a range of posttranscriptional modifications in mRNA, including methylation of the N6 and N1 positions in adenine, pseudouridylation, and methylation of carbon 5 in cytosine (m5C). However, knowledge about the prevalence and transcriptome-wide distribution of m5C is still extremely limited; thus, studies in different cell types, tissues, and organisms are needed to gain insight into possible functions of this modification and implications for other regulatory processes. RESULTS: We have carried out an unbiased global analysis of m5C in total and nuclear poly(A) RNA of mouse embryonic stem cells and murine brain. We show that there are intriguing differences in these samples and cell compartments with respect to the degree of methylation, functional classification of methylated transcripts, and position bias within the transcript. Specifically, we observe a pronounced accumulation of m5C sites in the vicinity of the translational start codon, depletion in coding sequences, and mixed patterns of enrichment in the 3' UTR. Degree and pattern of methylation distinguish transcripts modified in both embryonic stem cells and brain from those methylated in either one of the samples. We also analyze potential correlations between m5C and micro RNA target sites, binding sites of RNA binding proteins, and N6-methyladenosine. CONCLUSION: Our study presents the first comprehensive picture of cytosine methylation in the epitranscriptome of pluripotent and differentiated stages in the mouse. These data provide an invaluable resource for future studies of function and biological significance of m5C in mRNA in mammals.
Assuntos
5-Metilcitosina , Encéfalo/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , RNA Mensageiro/genética , 5-Metilcitosina/química , Animais , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metilação , Camundongos , MicroRNAs/genética , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA , TranscriptomaRESUMO
We report on the syntheses of 5-hydroxymethyl-uridine [5hm(rU)] and -cytidine [5hm(rC)] phosphoramidites and their incorporation into RNA by solid-phase synthesis. Deprotection of the oligonucleotides is accomplished in a straightforward manner using standard conditions, confirming the appropriateness of the acetyl protection used for the pseudobenzylic alcohol moieties. The approach provides robust access to 5hm(rC/U)-modified RNAs that await applications in pull-down experiments to identify potential modification enzymes. They will also serve as synthetic probes for the development of high-throughput-sequencing methods in native RNAs. 1Introduction2Protection Strategies Reported for the Synthesis of 5hm(dC)-Modified DNA3Synthesis of 5-Hydroxymethylpyrimidine-Modified RNA3.1Synthesis of 5hm(rC) Phosphoramidite3.2Synthesis of 5hm(rU) Phosphoramidite3.3Synthesis of 5hm(rC)- and 5hm(rU)-Modified RNA4Conclusions.
RESUMO
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.
Assuntos
Clivagem do RNA , RNA/química , Ligação de Hidrogênio , Íons/química , Prótons , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded ß barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Liases/química , Ficobiliproteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Análise EspectralRESUMO
Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood.