Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 790: 148164, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380246

RESUMO

Recent studies in the southwestern United States have shown that smelting processes and mine tailings emit heavy metal(loid)s that are distributed via wind dispersion to nearby communities. With increased attention regarding the effect of air pollution on environmental health, communities have begun to use citizen/community-based monitoring techniques to measure the concentration of metal(loid)s and evaluate their air quality. This study was conducted in a mining community to assess the efficacy of foliar surfaces as compared to an inverted disc (frisbee) to sample aerosol pollutants in ambient air. The assessment was conducted by evaluating As, Pb, Cd, Cu, Al, Ni, and Zn concentrations versus distance from a former smelter, statistical and regression analyses, and enrichment factor calculations compared to similar sites worldwide. Both the foliar and frisbee collection methods had a decrease in metal(loid)s concentration as a function of distance from the retired smelter. Statistical calculations show that the collection methods had similar mean concentrations for all of the metal(loid)s of interest; however, the tests also indicate that the frisbee collection method generally collected more dust than the foliar method. The enrichment factors from both collection methods were comparable to similar studies by other mining areas referenced, except for aluminum. Since there is evidence of enrichment, correlation between methods, and citizen/community science potential, these efforts show promise for the field. Further studies should consider alternating the types of plant used for foliar collection as well as collecting samples on a more frequent basis in order to sufficiently categorize results based on meteorological conditions.


Assuntos
Metais Pesados , Poluentes do Solo , Aerossóis , Poeira/análise , Monitoramento Ambiental , Metais Pesados/análise , Mineração , Poluentes do Solo/análise
2.
Environ Sci Technol ; 50(21): 11706-11713, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27700056

RESUMO

This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056-18 µm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32 and 0.56 µm and a smaller mode in the coarse range (>3 µm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Submicrometer particles were generally more hygroscopic than supermicrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 µm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Mineração , Tamanho da Partícula , Sistema Respiratório
3.
Atmosphere (Basel) ; 7(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29082035

RESUMO

Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure.

4.
Chemosphere ; 122: 219-226, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25496740

RESUMO

Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (<1µm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650m) and from topsoil at all sample locations, extending to more than 1km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Chumbo/análise , Material Particulado/análise , Poluentes do Solo/análise , Aerossóis/análise , Arizona , Cobre , Monitoramento Ambiental/métodos , Isótopos/análise , Mineração
5.
Sci Total Environ ; 493: 750-6, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24995641

RESUMO

Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (<1 µm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (<1 µm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Cobre/análise , Poeira/análise , Exposição Ambiental/estatística & dados numéricos , Chumbo/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Arizona , Exposição Ambiental/prevenção & controle , Monitoramento Ambiental , Humanos , Metalurgia
6.
Rev Environ Health ; 29(1-2): 91-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552963

RESUMO

Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.


Assuntos
Poluentes Atmosféricos , Poeira , Mineração , Modelos Químicos , Arizona , Simulação por Computador
7.
Aeolian Res ; 14: 75-83, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25621085

RESUMO

Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA