RESUMO
BACKGROUND: Most studies assessing pathophysiological heterogeneity in asthma have been conducted in high-income countries (HICs), with little known about the prevalence and characteristics of different asthma inflammatory phenotypes in low-and middle-income countries (LMICs). This study assessed sputum inflammatory phenotypes in five centres, in Brazil, Ecuador, Uganda, New Zealand (NZ) and the United Kingdom (UK). METHODS: We conducted a cross-sectional study of 998 asthmatics and 356 non-asthmatics in 2016-20. All centres studied children and adolescents (age range 8-20 years), except the UK centre which involved 26-27 year-olds. Information was collected using questionnaires, clinical characterization, blood and induced sputum. RESULTS: Of 623 asthmatics with sputum results, 39% (243) were classified as eosinophilic or mixed granulocytic, i.e. eosinophilic asthma (EA). Adjusted for age and sex, with NZ as baseline, the UK showed similar odds of EA (odds ratio 1.04, 95% confidence interval 0.37-2.94) with lower odds in the LMICs: Brazil (0.73, 0.42-1.27), Ecuador (0.40, 0.24-0.66) and Uganda (0.62, 0.37-1.04). Despite the low prevalence of neutrophilic asthma in most centres, sputum neutrophilia was increased in asthmatics and non-asthmatics in Uganda. CONCLUSIONS: This is the first time that sputum induction has been used to compare asthma inflammatory phenotypes in HICs and LMICs. Most cases were non-eosinophilic, including in settings where corticosteroid use was low. A lower prevalence of EA was observed in the LMICs than in the HICs. This has major implications for asthma prevention and management, and suggests that novel prevention strategies and therapies specifically targeting non-eosinophilic asthma are required globally.
Assuntos
Asma , Humanos , Estudos Transversais , Asma/epidemiologia , Asma/tratamento farmacológico , Fenótipo , Brasil/epidemiologia , Nova Zelândia/epidemiologiaRESUMO
Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Proteínas do Envelope Viral , Estudos Soroepidemiológicos , COVID-19/diagnóstico , Glicoproteínas de MembranaRESUMO
Proteomics is the identification, detection and quantification of proteins within a biological sample. The complete set of proteins expressed by an organism is known as the proteome. The availability of new high-throughput proteomic technologies, such as Olink Proteomic Proximity Extension Assay (PEA) technology has enabled detailed investigation of the circulating proteome in large-scale epidemiological studies. In particular, the Olink® Target 96 inflammatory panel allows the measurement of 92 circulating inflammatory proteins. The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective population-based cohort study which recruited pregnant women in 1991-1992 and has followed these women, their partners, and their offspring ever since. In this data note, we describe the newly-released proteomic data available in ALSPAC. Ninety-two proteins were analysed in 9000 blood plasma samples using the Olink® Target 96 inflammatory panel. Samples were derived from 2968 fasted mothers (mean age 47.5; Focus on Mothers 1 (FOM1)), 3005 non-fasted offspring at age 9 (Focus@9) and 3027 fasted offspring at age 24 (Focus@24). Post sample filtering, 1834 offspring have data at both timepoints and 1119 of those have data from their mother available. We performed quality control analyses using a standardised data processing workflow ( metaboprep) to produce a filtered dataset of 8983 samples for researchers to use in future analyses. Initial validation analyses indicate that IL-6 measured using the Olink® Target 96 inflammatory panel is highly correlated with IL-6 previously measured by clinical chemistry (Pearson's correlation = 0.77) and we are able to reproduce the reported positive correlation between body mass index (BMI) and IL-6. The pre-processing and validation analyses indicate a rich proteomic dataset to further characterise the role of inflammation in health and disease.
RESUMO
Investigating whether DNA methylation (DNA-M) at an earlier age is associated with lung function at a later age and whether this relationship differs by sex could enable prediction of future lung function deficit. A training/testing-based technique was used to screen 402â714 cytosine-phosphate-guanine dinucleotide sites (CpGs) to assess the longitudinal association of blood-based DNA-M at ages 10 and 18â years with lung function at 18 and 26â years, respectively, in the Isle of Wight birth cohort (IOWBC). Multivariable linear mixed models were applied to the CpGs that passed screening. To detect differentially methylated regions (DMRs), DMR enrichment analysis was conducted. Findings were further examined in the Avon Longitudinal Study of Parents and Children (ALSPAC). Biological relevance of the identified CpGs was assessed using gene expression data. DNA-M at eight CpGs (five CpGs with forced expiratory volume in 1â s (FEV1) and three CpGs with FEV1/forced vital capacity (FVC)) at an earlier age was associated with lung function at a later age regardless of sex, while at 13 CpGs (five CpGs with FVC, three with FEV1 and five with FEV1/FVC), the associations were sex-specific (p FDR <0.05) in IOWBC, with consistent directions of association in ALSPAC (IOWBC-ALSPAC consistent CpGs). cg16582803 (WNT10A) and cg14083603 (ZGPAT) were replicated in ALSPAC for main and sex-specific effects, respectively. Among IOWBC-ALSPAC consistent CpGs, DNA-M at cg01376079 (SSH3) and cg07557690 (TGFBR3) was associated with gene expression both longitudinally and cross-sectionally. In total, 57 and 170 DMRs were linked to lung function longitudinally in males and females, respectively. CpGs showing longitudinal associations with lung function have the potential to serve as candidate markers in future studies on lung function deficit prediction.
RESUMO
PURPOSE: Body mass index (BMI) is associated with asthma but associations of BMI temporal patterns with asthma incidence are unclear. Previous studies suggest that DNA methylation (DNAm) is associated with asthma status and variation in DNAm is a consequence of BMI changes. This study assessed the direct and indirect (via DNAm) effects of BMI trajectories in childhood on asthma incidence at young adulthood. METHODS: Data from the Isle of Wight (IoW) birth cohort were included in the analyses. Group-based trajectory modelling was applied to infer latent BMI trajectories from ages 1 to 10 years. An R package, ttscreening, was applied to identify differentially methylated CpGs at age 10 years associated with BMI trajectories, stratified for sex. Logistic regressions were used to further exclude CpGs with DNAm at age 10 years not associated with asthma incidence at 18 years. CpGs discovered via path analyses that mediated the association of BMI trajectories with asthma incidence in the IoW cohort were further tested in an independent cohort, the Avon Longitudinal Study of Children and Parents (ALSPAC). RESULTS: Two BMI trajectories (high vs. normal) were identified. Of the 442,474 CpG sites, DNAm at 159 CpGs in males and 212 in females were potentially associated with BMI trajectories. Assessment of their association with asthma incidence identified 9 CpGs in males and 6 CpGs in females. DNAm at 4 of these 15 CpGs showed statistically significant mediation effects (p-value < 0.05). At two of the 4 CpGs (cg23632109 and cg10817500), DNAm completely mediated the association (i.e., only statistically significant indirect effects were identified). In the ALSPAC cohort, at all four CpGs, the same direction of mediating effects were observed as those found in the IoW cohort, although statistically insignificant. CONCLUSION: The association of BMI trajectory in childhood with asthma incidence at young adulthood is possibly mediated by DNAm.
RESUMO
Human eye color is highly heritable, but its genetic architecture is not yet fully understood. We report the results of the largest genome-wide association study for eye color to date, involving up to 192,986 European participants from 10 populations. We identify 124 independent associations arising from 61 discrete genomic regions, including 50 previously unidentified. We find evidence for genes involved in melanin pigmentation, but we also find associations with genes involved in iris morphology and structure. Further analyses in 1636 Asian participants from two populations suggest that iris pigmentation variation in Asians is genetically similar to Europeans, albeit with smaller effect sizes. Our findings collectively explain 53.2% (95% confidence interval, 45.4 to 61.0%) of eye color variation using common single-nucleotide polymorphisms. Overall, our study outcomes demonstrate that the genetic complexity of human eye color considerably exceeds previous knowledge and expectations, highlighting eye color as a genetically highly complex human trait.
RESUMO
BACKGROUND: The pattern of lung function development from pre-adolescence to adulthood plays a significant role in the pathogenesis of respiratory diseases. Inconsistent findings in genetic studies on lung function trajectories, the importance of DNA methylation (DNA-M), and the critical role of adolescence in lung function development motivated the present study of pre-adolescent DNA-M with lung function trajectories. This study investigated epigenome-wide associations of DNA-M at cytosine-phosphate-guanine dinucleotide sites (CpGs) at childhood with lung function trajectories from childhood to young adulthood. METHODS: DNA-M was measured in peripheral blood at age 10 years in the Isle of Wight (IOW) birth cohort. Spirometry was conducted at ages 10, 18, and 26 years. A training/testing-based method was used to screen CpGs. Multivariable logistic regressions were applied to assess the association of DNA-M with lung function trajectories from pre-adolescence to adulthood. To detect differentially methylated regions (DMRs) among CpGs, DMR enrichment analysis was conducted. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Pathway analyses were performed on the mapped genes of the identified CpGs and DMRs. Biological relevance of the identified CpGs was assessed with gene expression. All analyses were stratified by sex. RESULTS: High and low trajectories of FVC, FEV1, and FEV1/FVC in each sex were identified. At PBonferroni < 0.05, DNA-M at 96 distinct CpGs (41 in males) showed associations with FVC, FEV1, and FEV1/FVC trajectories in IOW cohort. These 95 CpGs (cg24000797 was disqualified) were further tested in ALSPAC; 44 CpGs (19 in males) of these 95 showed the same directions of association as in the IOW cohort; and three CpGs (two in males) were replicated. DNA-M at two and four CpGs showed significant associations with the corresponding gene expression in males and females, respectively. At PFDR < 0.05, 23 and 10 DMRs were identified in males and females, respectively. Pathways were identified; some of those were linked to lung function and chronic obstructive lung diseases. CONCLUSION: The identified CpGs at pre-adolescence have the potential to serve as candidate markers for lung function trajectory prediction and chronic lung diseases.
Assuntos
Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Fatores Sexuais , Reino UnidoRESUMO
A DNA bank has been created from the Millennium Cohort Study (MCS) saliva samples. A total of 23,336 samples are available, from 9,259 cohort members (4,630 males and 4,629 females), 8,898 mothers and 5,179 fathers. There are 4,533 mother, child, father 'triads'. This paper describes the collection of the saliva samples from cohort members and their biological parents in the MCS. It analyses response rates and predictors of response, and details the DNA extraction, genotyping and imputation procedures performed on the data.
Assuntos
Pai , Mães , Criança , Estudos de Coortes , DNA , Feminino , Humanos , Masculino , Reino Unido/epidemiologiaRESUMO
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Dieta , Genômica , Humanos , Estilo de VidaRESUMO
BACKGROUND: Underlying biological mechanisms involved in sex differences in asthma status changes from pre- to post-adolescence are unclear. DNA methylation (DNAm) has been shown to be associated with the risk of asthma. OBJECTIVE: We hypothesized that asthma acquisition from pre- to post-adolescence was associated with changes in DNAm during this period at asthma-associated cytosine-phosphate-guanine (CpG) sites and such an association was sex-specific. METHODS: Subjects from the Isle of Wight birth cohort (IOWBC) with DNAm in blood at ages 10 and 18 years (n = 124 females, 151 males) were studied. Using a training-testing approach, epigenome-wide CpGs associated with asthma were identified. Logistic regression was used to examine sex-specific associations of DNAm changes with asthma acquisition between ages 10 and 18 at asthma-associated CpGs. The ALSPAC birth cohort was used for independent replication. To assess functional relevance of identified CpGs, association of DNAm with gene expression in blood was assessed. RESULTS: We identified 535 CpGs potentially associated with asthma. Significant interaction effects of DNAm changes and sex on asthma acquisition in adolescence were found at 13 of the 535 CpGs in IOWBC (P-values <1.0 × 10-3 ). In the replication cohort, consistent interaction effects were observed at 10 of the 13 CpGs. At 7 of these 10 CpGs, opposite DNAm changes across adolescence were observed between sexes in both cohorts. In both cohorts, cg20891917, located on IFRD1 linked to asthma, shows strong sex-specific effects on asthma transition (P-values <.01 in both cohorts). CONCLUSION AND CLINICAL RELEVANCE: Gender reversal in asthma acquisition is associated with opposite changes in DNAm (males vs females) from pre- to post-adolescence at asthma-associated CpGs. These CpGs are potential biomarkers of sex-specific asthma acquisition in adolescence.
Assuntos
Asma/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Expressão Gênica , Adolescente , Asma/epidemiologia , Coorte de Nascimento , Criança , Epigenoma , Feminino , Humanos , Incidência , Modelos Logísticos , Masculino , Remissão Espontânea , Caracteres Sexuais , Distribuição por Sexo , Fatores SexuaisRESUMO
Recent population-based1-4 and clinical studies5 have identified a range of factors associated with human gut microbiome variation. Murine quantitative trait loci6, human twin studies7 and microbiome genome-wide association studies1,3,8-12 have provided evidence for genetic contributions to microbiome composition. Despite this, there is still poor overlap in genetic association across human studies. Using appropriate taxon-specific models, along with support from independent cohorts, we show an association between human host genotype and gut microbiome variation. We also suggest that interpretation of applied analyses using genetic associations is complicated by the probable overlap between genetic contributions and heritable components of host environment. Using faecal 16S ribosomal RNA gene sequences and host genotype data from the Flemish Gut Flora Project (n = 2,223) and two German cohorts (FoCus, n = 950; PopGen, n = 717), we identify genetic associations involving multiple microbial traits. Two of these associations achieved a study-level threshold of P = 1.57 × 10-10; an association between Ruminococcus and rs150018970 near RAPGEF1 on chromosome 9, and between Coprococcus and rs561177583 within LINC01787 on chromosome 1. Exploratory analyses were undertaken using 11 other genome-wide associations with strong evidence for association (P < 2.5 × 10-8) and a previously reported signal of association between rs4988235 (MCM6/LCT) and Bifidobacterium. Across these 14 single-nucleotide polymorphisms there was evidence of signal overlap with other genome-wide association studies, including those for age at menarche and cardiometabolic traits. Mendelian randomization analysis was able to estimate associations between microbial traits and disease (including Bifidobacterium and body composition); however, in the absence of clear microbiome-driven effects, caution is needed in interpretation. Overall, this work marks a growing catalogue of genetic associations that will provide insight into the contribution of host genotype to gut microbiome. Despite this, the uncertain origin of association signals will likely complicate future work looking to dissect function or use associations for causal inference analysis.
Assuntos
Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Microbiota/genética , Animais , Bifidobacterium/genética , Fezes/microbiologia , Genótipo , Humanos , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Ribossômico 16S/genéticaRESUMO
OBJECTIVES: The objective of this study was to explore potential relationships between neonatal line (NNL) width and early life history variables such as maternal health, gestation, the birth process, and perinatal health. MATERIALS AND METHODS: Histological thin sections of deciduous canines were studied from 71 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). The width of the NNL was measured in three locations on the tooth crown using spatial mapping techniques (ArcGIS) from digital images from an Olympus VS-120 microscope. Life history variables were collected prospectively through a combination of clinical observations and questionnaires. RESULTS: Infants born late term or post term had narrower neonatal lines than those born prematurely or at full term. Infants born in Autumn (September to November) had narrower NNLs than those born at other times of year. NNLs in infants born to mothers with hypertension were wider than those without. Infants resuscitated at birth or born to obese mothers had narrower NNLs than those that were not. There was no association between NNL width and either the type or duration of delivery. DISCUSSION: The NNL in enamel is an irregular accentuated line, but the factors underlying its formation and width remain unclear. In contrast to some previous studies, we found no association between wider NNLs and long or difficult births. Instead, we found that the width of the neonatal line NNL varied in relation to parameters that reflected the prenatal environment and length of gestation.
Assuntos
Saúde Materna , Dente Decíduo/anatomia & histologia , Adulto , Peso ao Nascer/fisiologia , Criança , Dente Canino/anatomia & histologia , Esmalte Dentário/anatomia & histologia , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Gravidez/fisiologia , Reino UnidoRESUMO
BACKGROUND: Adolescence is a period characterized by major biological development, which may be associated with changes in DNA methylation (DNA-M). However, it is unknown to what extent DNA-M varies from pre- to post-adolescence, whether the pattern of changes is different between females and males, and how adolescence-related factors are associated with changes in DNA-M. METHODS: Genome-scale DNA-M at ages 10 and 18 years in whole blood of 325 subjects (n = 140 females) in the Isle of Wight (IOW) birth cohort was analyzed using Illumina Infinium arrays (450K and EPIC). Linear mixed models were used to examine DNA-M changes between pre- and post-adolescence and whether the changes were gender-specific. Adolescence-related factors and environmental exposure factors were assessed on their association with DNA-M changes. Replication of findings was attempted in the comparable Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS: In the IOW cohort, after controlling for technical variation and cell compositions at both pre- and post-adolescence, 15,532 cytosine-phosphate-guanine (CpG) sites (of 400,825 CpGs, 3.88%) showed statistically significant DNA-M changes from pre-adolescence to post-adolescence invariant to gender (false discovery rate (FDR) = 0.05). Of these 15,532 CpGs, 10,212 CpGs (66%) were replicated in the ALSPAC cohort. Pathway analysis using Ingenuity Pathway Analysis (IPA) identified significant biological pathways related to growth and development of the reproductive system, emphasizing the importance of this period of transition on epigenetic state of genes. In addition, in IOW, we identified 1179 CpGs with gender-specific DNA-M changes. In the IOW cohort, body mass index (BMI) at age 10 years, age of growth spurt, nonsteroidal drugs use, and current smoking status showed statistically significant associations with DNA-M changes at 15 CpGs on 14 genes such as the AHRR gene. For BMI at age 10 years, the association was gender-specific. Findings on current smoking status were replicated in the ALSPAC cohort. CONCLUSION: Adolescent transition is associated with changes in DNA-M at more than 15K CpGs. Identified pathways emphasize the importance of this period of transition on epigenetic state of genes relevant to cell growth and immune system development.
Assuntos
Desenvolvimento do Adolescente , Metilação de DNA , Epigenômica/métodos , Adolescente , Índice de Massa Corporal , Criança , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Caracteres SexuaisRESUMO
Britain and Ireland are known to show population genetic structure; however, large swathes of Scotland, in particular, have yet to be described. Delineating the structure and ancestry of these populations will allow variant discovery efforts to focus efficiently on areas not represented in existing cohorts. Thus, we assembled genotype data for 2,554 individuals from across the entire archipelago with geographically restricted ancestry, and performed population structure analyses and comparisons to ancient DNA. Extensive geographic structuring is revealed, from broad scales such as a NE to SW divide in mainland Scotland, through to the finest scale observed to date: across 3 km in the Northern Isles. Many genetic boundaries are consistent with Dark Age kingdoms of Gaels, Picts, Britons, and Norse. Populations in the Hebrides, the Highlands, Argyll, Donegal, and the Isle of Man show characteristics of isolation. We document a pole of Norwegian ancestry in the north of the archipelago (reaching 23 to 28% in Shetland) which complements previously described poles of Germanic ancestry in the east, and "Celtic" to the west. This modern genetic structure suggests a northwestern British or Irish source population for the ancient Gaels that contributed to the founding of Iceland. As rarer variants, often with larger effect sizes, become the focus of complex trait genetics, more diverse rural cohorts may be required to optimize discoveries in British and Irish populations and their considerable global diaspora.
Assuntos
DNA Antigo/análise , Etnicidade/genética , Variação Genética , Genética Populacional , Genoma Humano , Humanos , Irlanda , Ilhas , EscóciaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Genetic predisposition might affect neurodevelopmental outcomes of prenatal methylmercury exposure. We examined suspected heterogeneities for modification of exposure-related neurodevelopment in children from the Avon Longitudinal Study of Parents and Children (1991-2000), Bristol, United Kingdom. A subgroup (n = 1,127 from a pilot study and 1,045 from the present study) was identified based on the availability of the mercury concentration of cord tissue as a measure of prenatal methylmercury exposure, data on 247 single-nucleotide polymorphisms (SNPs), and Wechsler Intelligence Scale for Children intelligence quotient (IQ) scores. Log10-transformed mercury concentration was positively associated with IQ, but adjustment for confounding cofactors attenuated this association. A finding of enhanced interaction with methylmercury was replicated in this study for the minor allele of rs1042838 (progesterone receptor) (ß = -11.8, 95% confidence interval: -23.0, -0.6; P for interaction = 0.004) and weakly for rs662 (paraoxonase 1) (ß = -3.6, 95% confidence interval: -11.4, 4.3; P = 0.117). In the joint sample, new interacting single-nucleotide polymorphisms were discovered in relation to superoxide dismutase 2, ATP binding cassette subfamily A member 1, and metallothionein 1M genes. While the low-level prenatal exposure to methylmercury was not associated with child cognition, progesterone receptor rs1042838 minor alleles revealed a negative association of mercury exposure with IQ.
Assuntos
Desenvolvimento Infantil/efeitos dos fármacos , Predisposição Genética para Doença/genética , Compostos de Metilmercúrio/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Criança , Estudos de Coortes , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Masculino , Compostos de Metilmercúrio/análise , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Cordão Umbilical/química , Escalas de WechslerRESUMO
BACKGROUND: Systematic reviews of randomised controlled trials (RCTs) have suggested that maternal vitamin D (25[OH]D) and calcium supplementation increase birth weight. However, limitations of many trials were highlighted in the reviews. Our aim was to combine genetic and RCT data to estimate causal effects of these two maternal traits on offspring birth weight. METHODS AND FINDINGS: We performed two-sample mendelian randomisation (MR) using genetic instrumental variables associated with 25(OH)D and calcium that had been identified in genome-wide association studies (GWAS; sample 1; N = 122,123 for 25[OH]D and N = 61,275 for calcium). Associations between these maternal genetic variants and offspring birth weight were calculated in the UK Biobank (UKB) (sample 2; N = 190,406). We used data on mother-child pairs from two United Kingdom birth cohorts (combined N = 5,223) in sensitivity analyses to check whether results were influenced by fetal genotype, which is correlated with the maternal genotype (r ≈ 0.5). Further sensitivity analyses to test the reliability of the results included MR-Egger, weighted-median estimator, 'leave-one-out', and multivariable MR analyses. We triangulated MR results with those from RCTs, in which we used randomisation to supplementation with vitamin D (24 RCTs, combined N = 5,276) and calcium (6 RCTs, combined N = 543) as an instrumental variable to determine the effects of 25(OH)D and calcium on birth weight. In the main MR analysis, there was no strong evidence of an effect of maternal 25(OH)D on birth weight (difference in mean birth weight -0.03 g [95% CI -2.48 to 2.42 g, p = 0.981] per 10% higher maternal 25[OH]D). The effect estimate was consistent across our MR sensitivity analyses. Instrumental variable analyses applied to RCTs suggested a weak positive causal effect (5.94 g [95% CI 2.15-9.73, p = 0.002] per 10% higher maternal 25[OH]D), but this result may be exaggerated because of risk of bias in the included RCTs. The main MR analysis for maternal calcium also suggested no strong evidence of an effect on birth weight (-20 g [95% CI -44 to 5 g, p = 0.116] per 1 SD higher maternal calcium level). Some sensitivity analyses suggested that the genetic instrument for calcium was associated with birth weight via exposures that are independent of calcium levels (horizontal pleiotropy). Application of instrumental variable analyses to RCTs suggested that calcium has a substantial effect on birth weight (178 g [95% CI 121-236 g, p = 1.43 × 10-9] per 1 SD higher maternal calcium level) that was not consistent with any of the MR results. However, the RCT instrumental variable estimate may have been exaggerated because of risk of bias in the included RCTs. Other study limitations include the low response rate of UK Biobank, which may bias MR estimates, and the lack of suitable data to test whether the effects of genetic instruments on maternal calcium levels during pregnancy were the same as those outside of pregnancy. CONCLUSIONS: Our results suggest that maternal circulating 25(OH)D does not influence birth weight in otherwise healthy newborns. However, the effect of maternal circulating calcium on birth weight is unclear and requires further exploration with more research including RCT and/or MR analyses with more valid instruments.
Assuntos
Peso ao Nascer/fisiologia , Cálcio/sangue , Estudo de Associação Genômica Ampla/métodos , Análise da Randomização Mendeliana/métodos , Vitamina D/análogos & derivados , Adulto , Biomarcadores/sangue , Feminino , Variação Genética/genética , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Saúde Materna , Gravidez , Vitamina D/sangue , Vitamina D/genéticaRESUMO
Serum and plasma are commonly used in metabolomic-epidemiology studies. Their metabolome is susceptible to differences in pre-analytical conditions and the impact of this is unclear. Participant-matched EDTA-plasma and serum samples were collected from 37 non-fasting volunteers and profiled using a targeted nuclear magnetic resonance (NMR) metabolomics platform (n = 151 traits). Correlations and differences in mean of metabolite concentrations were compared between reference (pre-storage: 4 °C, 1.5 h; post-storage: no buffer addition delay or NMR analysis delay) and four pre-storage blood processing conditions, where samples were incubated at (i) 4 °C, 24 h; (ii) 4 °C, 48 h; (iii) 21 °C, 24 h; and (iv) 21 °C, 48 h, before centrifugation; and two post-storage sample processing conditions in which samples thawed overnight (i) then left for 24 h before addition of sodium buffer followed by immediate NMR analysis; and (ii) addition of sodium buffer, then left for 24 h before NMR profiling. We used multilevel linear regression models and Spearman's rank correlation coefficients to analyse the data. Most metabolic traits had high rank correlation and minimal differences in mean concentrations between samples subjected to reference and the different conditions tested, that may commonly occur in studies. However, glycolysis metabolites, histidine, acetate and diacylglycerol concentrations may be compromised and this could bias results in association/causal analyses.
RESUMO
BACKGROUND: Mitochondrial DNA copy number (mtDNA CN) exhibits interindividual and intercellular variation, but few genome-wide association studies (GWAS) of directly assayed mtDNA CN exist. We undertook a GWAS of qPCR-assayed mtDNA CN in the Avon Longitudinal Study of Parents and Children (ALSPAC) and the UK Blood Service (UKBS) cohort. After validating and harmonising data, 5461 ALSPAC mothers (16-43 years at mtDNA CN assay) and 1338 UKBS females (17-69 years) were included in a meta-analysis. Sensitivity analyses restricted to females with white cell-extracted DNA and adjusted for estimated or assayed cell proportions. Associations were also explored in ALSPAC children and UKBS males. RESULTS: A neutrophil-associated locus approached genome-wide significance (rs709591 [MED24], ß (change in SD units of mtDNA CN per allele) [SE] - 0.084 [0.016], p = 1.54e-07) in the main meta-analysis of adult females. This association was concordant in magnitude and direction in UKBS males and ALSPAC neonates. SNPs in and around ABHD8 were associated with mtDNA CN in ALSPAC neonates (rs10424198, ß [SE] 0.262 [0.034], p = 1.40e-14), but not other study groups. In a meta-analysis of unrelated individuals (N = 11,253), we replicated a published association in TFAM (ß [SE] 0.046 [0.017], p = 0.006), with an effect size much smaller than that observed in the replication analysis of a previous in silico GWAS. CONCLUSIONS: In a hypothesis-generating GWAS, we confirm an association between TFAM and mtDNA CN and present putative loci requiring replication in much larger samples. We discuss the limitations of our work, in terms of measurement error and cellular heterogeneity, and highlight the need for larger studies to better understand nuclear genomic control of mtDNA copy number.
Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Estudo de Associação Genômica Ampla/métodos , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Quantitative molecular data from urine are rare in epidemiology and genetics. NMR spectroscopy could provide these data in high throughput, and it has already been applied in epidemiological settings to analyse urine samples. However, quantitative protocols for large-scale applications are not available. METHODS: We describe in detail how to prepare urine samples and perform NMR experiments to obtain quantitative metabolic information. Semi-automated quantitative line shape fitting analyses were set up for 43 metabolites and applied to data from various analytical test samples and from 1004 individuals from a population-based epidemiological cohort. Novel analyses on how urine metabolites associate with quantitative serum NMR metabolomics data (61 metabolic measures; n = 995) were performed. In addition, confirmatory genome-wide analyses of urine metabolites were conducted (n = 578). The fully automated quantitative regression-based spectral analysis is demonstrated for creatinine and glucose (n = 4548). RESULTS: Intra-assay metabolite variations were mostly <5%, indicating high robustness and accuracy of urine NMR spectroscopy methodology per se. Intra-individual metabolite variations were large, ranging from 6% to 194%. However, population-based inter-individual metabolite variations were even larger (from 14% to 1655%), providing a sound base for epidemiological applications. Metabolic associations between urine and serum were found to be clearly weaker than those within serum and within urine, indicating that urinary metabolomics data provide independent metabolic information. Two previous genome-wide hits for formate and 2-hydroxyisobutyrate were replicated at genome-wide significance. CONCLUSION: Quantitative urine metabolomics data suggest broad novelty for systems epidemiology. A roadmap for an open access methodology is provided.