Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Genet ; 20(1): e1011087, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190412

RESUMO

Plant cell growth involves coordination of numerous processes and signaling cascades among the different cellular compartments to concomitantly enlarge the protoplast and the surrounding cell wall. The cell wall integrity-sensing process involves the extracellular LRX (LRR-Extensin) proteins that bind RALF (Rapid ALkalinization Factor) peptide hormones and, in vegetative tissues, interact with the transmembrane receptor kinase FERONIA (FER). This LRX/RALF/FER signaling module influences cell wall composition and regulates cell growth. The numerous proteins involved in or influenced by this module are beginning to be characterized. In a genetic screen, mutations in Apyrase 7 (APY7) were identified to suppress growth defects observed in lrx1 and fer mutants. APY7 encodes a Golgi-localized NTP-diphosphohydrolase, but opposed to other apyrases of Arabidopsis, APY7 revealed to be a negative regulator of cell growth. APY7 modulates the growth-inhibiting effect of RALF1, influences the cell wall architecture and -composition, and alters the pH of the extracellular matrix, all of which affect cell growth. Together, this study reveals a function of APY7 in cell wall formation and cell growth that is connected to growth processes influenced by the LRX/RALF/FER signaling module.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Apirase/genética , Apirase/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo
2.
Elife ; 112022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989334

RESUMO

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fosfotransferases/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
3.
Cells ; 10(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808926

RESUMO

Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Quinase 8 Dependente de Ciclina/genética , Raízes de Plantas/genética , Ramnose/análise , Plântula/genética
4.
PLoS Genet ; 16(6): e1008847, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559234

RESUMO

Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane Catharanthus roseus Receptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Mutação , Fosfotransferases/genética , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/crescimento & desenvolvimento , Domínios Proteicos/genética , Mapas de Interação de Proteínas , Plântula/citologia , Plântula/crescimento & desenvolvimento , Transdução de Sinais/genética
5.
Curr Biol ; 29(17): R851-R858, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505187

RESUMO

Plant cells are surrounded by a cell wall that provides shape and physically limits cell expansion. To sense the environment and status of cell wall structures, plants have evolved cell wall integrity-sensing mechanisms that involve a number of receptors at the plasma membrane. These receptors can bind cell wall components and/or hormones to coordinate processes in the cell wall and the cytoplasm. This review focuses on the role of leucine-rich repeat extensins (LRXs) during cell wall development. LRXs are chimeric proteins that insolubilize in the cell wall and form protein-protein interaction platforms. LRXs bind RALF peptide hormones that modify cell wall expansion and also directly interact with the transmembrane receptor FERONIA, which is involved in cell growth regulation. LRX proteins, therefore, also represent a link between the cell wall and plasma membrane, perceiving extracellular signals and indirectly relaying this information to the cytoplasm.


Assuntos
Parede Celular/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas/metabolismo , Proteínas de Repetições Ricas em Leucina
6.
Genome Biol ; 20(1): 157, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391082

RESUMO

BACKGROUND: Chromatin provides a tunable platform for gene expression control. Besides the well-studied core nucleosome, H1 linker histones are abundant chromatin components with intrinsic potential to influence chromatin function. Well studied in animals, little is known about the evolution of H1 function in other eukaryotic lineages for instance plants. Notably, in the model plant Arabidopsis, while H1 is known to influence heterochromatin and DNA methylation, its contribution to transcription, molecular, and cytological chromatin organization remains elusive. RESULTS: We provide a multi-scale functional study of Arabidopsis linker histones. We show that H1-deficient plants are viable yet show phenotypes in seed dormancy, flowering time, lateral root, and stomata formation-complemented by either or both of the major variants. H1 depletion also impairs pluripotent callus formation. Fine-scale chromatin analyses combined with transcriptome and nucleosome profiling reveal distinct roles of H1 on hetero- and euchromatin: H1 is necessary to form heterochromatic domains yet dispensable for silencing of most transposable elements; H1 depletion affects nucleosome density distribution and mobility in euchromatin, spatial arrangement of nanodomains, histone acetylation, and methylation. These drastic changes affect moderately the transcription but reveal a subset of H1-sensitive genes. CONCLUSIONS: H1 variants have a profound impact on the molecular and spatial (nuclear) chromatin organization in Arabidopsis with distinct roles in euchromatin and heterochromatin and a dual causality on gene expression. Phenotypical analyses further suggest the novel possibility that H1-mediated chromatin organization may contribute to the epigenetic control of developmental and cellular transitions.


Assuntos
Arabidopsis/genética , Cromatina/química , Histonas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Epigênese Genética , Eucromatina/química , Regulação da Expressão Gênica de Plantas , Heterocromatina/química , Histonas/genética , Histonas/metabolismo , Mutação , Nucleossomos
7.
EMBO J ; 38(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850388

RESUMO

Cellular elongation requires the defined coordination of intra- and extracellular processes, but the underlying mechanisms are largely unknown. The vacuole is the biggest plant organelle, and its dimensions play a role in defining plant cell expansion rates. Here, we show that the increase in vacuolar occupancy enables cellular elongation with relatively little enlargement of the cytosol in Arabidopsis thaliana We demonstrate that cell wall properties are sensed and impact on the intracellular expansion of the vacuole. Using vacuolar morphology as a quantitative read-out for intracellular growth processes, we reveal that the underlying cell wall sensing mechanism requires interaction of extracellular leucine-rich repeat extensins (LRXs) with the receptor-like kinase FERONIA (FER). Our data suggest that LRXs link plasma membrane-localised FER with the cell wall, allowing this module to jointly sense and convey extracellular signals to the cell. This mechanism coordinates the onset of cell wall acidification and loosening with the increase in vacuolar size.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Fosfotransferases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Vacúolos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Repetições Ricas em Leucina , Desenvolvimento Vegetal
8.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753668

RESUMO

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosiltransferases/genética , Fosfatidilinositol 3-Quinases , Proteínas de Arabidopsis/metabolismo , Leucina/biossíntese , Mutação , Organogênese Vegetal , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
9.
Plant Physiol ; 176(3): 1981-1992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247121

RESUMO

Leu-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal Leu-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis (Arabidopsisthaliana). Mutations in multiple pollen-expressed lrx genes cause severe defects in pollen germination and pollen tube growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the pollen tube growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modeling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Fenômenos Biofísicos , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/ultraestrutura , Análise de Elementos Finitos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Proteínas de Repetições Ricas em Leucina , Mutação/genética , Fenótipo , Pólen/citologia , Pólen/genética , Pólen/ultraestrutura , Tubo Polínico/citologia , Tubo Polínico/genética , Tubo Polínico/ultraestrutura , Proteínas/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/ultraestrutura
10.
Methods Mol Biol ; 1675: 633-651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052215

RESUMO

Transmission electron microscopy (TEM) is used to study the fine ultrastructural organization of cells. Delicate specimen preparation is required for results to reflect the "native" ultrastructural organization of subcellular features such as the nucleus. Despite the advent of high-resolution, fluorescent imaging of chromatin components, TEM still provides a unique and complementary level of resolution capturing chromatin organization at the nanoscale level. Here, we describe the workflow, from tissue preparation, TEM image acquisition and image processing, for obtaining a quantitative description of chromatin density distribution in plant cells, informing on local fluctuations and periodicity. Comparative analyses then allow to elucidate the structural changes induced by developmental or environmental cues, or by mutations affecting specific chromatin modifiers at the nanoscale level. We argue that this approach remains affordable and merits a renewed interest by the plant chromatin community.


Assuntos
Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão
11.
Science ; 358(6370): 1600-1603, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29242232

RESUMO

The communication of changes in the extracellular matrix to the interior of the cell is crucial for a cell's function. The extracellular peptides of the RAPID ALKALINIZATION FACTOR (RALF) family have been identified as ligands of receptor-like kinases of the CrRLK1L subclass, but the exact mechanism of their perception is unclear. We found that Arabidopsis RALF4 and RALF19 redundantly regulate pollen tube integrity and growth, and that their function depends on pollen-expressed proteins of the LEUCINE-RICH REPEAT EXTENSIN (LRX) family, which play a role in cell wall development but whose mode of action is not understood. The LRX proteins interact with RALFs, monitoring cell wall changes, which are communicated to the interior of the pollen tube via the CrRLK1L pathway to sustain normal growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Parede Celular/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Tubo Polínico/metabolismo , Proteínas Quinases/metabolismo
12.
BMC Plant Biol ; 17(1): 176, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078752

RESUMO

BACKGROUND: The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. METHODS: Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. RESULTS: Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. CONCLUSIONS: The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses.


Assuntos
Arabidopsis/ultraestrutura , Tubo Polínico/ultraestrutura , Criopreservação/métodos , Crioultramicrotomia/métodos , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Transmissão/métodos , Inclusão do Tecido/métodos
13.
Sci Rep ; 7: 41906, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165500

RESUMO

The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonoides/farmacologia , Glucosiltransferases/metabolismo , Ácidos Indolacéticos/metabolismo , Proteína Fosfatase 2/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Mutação , Proteína Fosfatase 2/genética
14.
Lab Chip ; 17(1): 82-90, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27883138

RESUMO

Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.


Assuntos
Dispositivos Lab-On-A-Chip , Tubo Polínico/crescimento & desenvolvimento , Módulo de Elasticidade , Desenho de Equipamento , Lilium/crescimento & desenvolvimento , Lilium/metabolismo , Microfluídica/instrumentação , Microfluídica/métodos , Microscopia Eletrônica , Tubo Polínico/química
15.
J Biol Chem ; 291(10): 5385-95, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26742840

RESUMO

Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonóis/metabolismo , Glucosiltransferases/metabolismo , Hexosiltransferases/metabolismo , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Glucosiltransferases/genética , Hexosiltransferases/química , Hexosiltransferases/genética , Homeostase , Dados de Sequência Molecular , Desenvolvimento Vegetal , Ramnose/metabolismo
16.
BMC Plant Biol ; 15: 155, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26099801

RESUMO

BACKGROUND: Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. RESULTS: The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. CONCLUSIONS: LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Leucina/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
17.
Plant Physiol ; 167(2): 367-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524442

RESUMO

Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/metabolismo , Germinação , Pólen/enzimologia , Pólen/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/farmacologia , Hidrolases de Éster Carboxílico/genética , Meios de Cultura/farmacologia , Esterificação/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homozigoto , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Pectinas/metabolismo , Fenótipo , Pólen/genética , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
BMC Plant Biol ; 14: 109, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24774365

RESUMO

BACKGROUND: A large number of post-transcriptional modifications of transfer RNAs (tRNAs) have been described in prokaryotes and eukaryotes. They are known to influence their stability, turnover, and chemical/physical properties. A specific subset of tRNAs contains a thiolated uridine residue at the wobble position to improve the codon-anticodon interaction and translational accuracy. The proteins involved in tRNA thiolation are reminiscent of prokaryotic sulfur transfer reactions and of the ubiquitylation process in eukaryotes. In plants, some of the proteins involved in this process have been identified and show a high degree of homology to their non-plant equivalents. For other proteins, the identification of the plant homologs is much less clear, due to the low conservation in protein sequence. RESULTS: This manuscript describes the identification of CTU2, the second CYTOPLASMIC THIOURIDYLASE protein of Arabidopsis thaliana. CTU2 is essential for tRNA thiolation and interacts with ROL5, the previously identified CTU1 homolog of Arabidopsis. CTU2 is ubiquitously expressed, yet its activity seems to be particularly important in root tissue. A ctu2 knock-out mutant shows an alteration in root development. CONCLUSIONS: The analysis of CTU2 adds a new component to the so far characterized protein network involved in tRNA thiolation in Arabidopsis. CTU2 is essential for tRNA thiolation as a ctu2 mutant fails to perform this tRNA modification. The identified Arabidopsis CTU2 is the first CTU2-type protein from plants to be experimentally verified, which is important considering the limited conservation of these proteins between plant and non-plant species. Based on the Arabidopsis protein sequence, CTU2-type proteins of other plant species can now be readily identified.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citosol/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , RNA de Transferência/metabolismo , Compostos de Sulfidrila/metabolismo , Transcrição Gênica , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Especificidade da Espécie , tRNA Metiltransferases/química , tRNA Metiltransferases/genética
19.
PLoS One ; 9(1): e86862, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466270

RESUMO

Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM) proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation. Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , RNA de Transferência/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Compostos de Enxofre/metabolismo , Arabidopsis/metabolismo , DNA Complementar/genética , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Raízes de Plantas/metabolismo , RNA de Transferência/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfurtransferases/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
Plant J ; 73(4): 617-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23106269

RESUMO

Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20-90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.


Assuntos
Lilium/fisiologia , Células Vegetais/fisiologia , Tubo Polínico/fisiologia , Fenômenos Biomecânicos , Parede Celular/fisiologia , Simulação por Computador , Elasticidade , Lilium/anatomia & histologia , Microscopia/instrumentação , Microscopia/métodos , Modelos Biológicos , Tubo Polínico/anatomia & histologia , Pressão , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA