RESUMO
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Assuntos
Carcinoma Hepatocelular , Metilação de DNA , Quadruplex G , Glucoquinase , Neoplasias Hepáticas , Proteínas de Membrana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Hepatocelular/genética , Ilhas de CpG/genética , Glucoquinase/genética , Glucoquinase/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
DNA secondary structures are essential elements of the genomic landscape, playing a critical role in regulating various cellular processes. These structures refer to G-quadruplexes, cruciforms, Z-DNA or H-DNA structures, amongst others (collectively called 'non-B DNA'), which DNA molecules can adopt beyond the B conformation. DNA secondary structures have significant biological roles, and their landscape is dynamic and can rearrange due to various factors, including changes in cellular conditions, temperature, and DNA-binding proteins. Understanding this dynamic nature is crucial for unraveling their functions in cellular processes. Detecting DNA secondary structures remains a challenge. Conventional methods, such as gel electrophoresis and chemical probing, have limitations in terms of sensitivity and specificity. Emerging techniques, including next-generation sequencing and single-molecule approaches, offer promise but face challenges since these techniques are mostly limited to only one type of secondary structure. Here we describe an updated version of a technique permanganate/S1 nuclease footprinting, which uses potassium permanganate to trap single-stranded DNA regions as found in many non-B structures, in combination with S1 nuclease digest and adapter ligation to detect genome-wide non-B formation. To overcome technical hurdles, we combined this method with direct adapter ligation and sequencing (PDAL-Seq). Furthermore, we established a user-friendly pipeline available on Galaxy to standardize PDAL-Seq data analysis. This optimized method allows the analysis of many types of DNA secondary structures that form in a living cell and will advance our knowledge of their roles in health and disease.
Assuntos
DNA , Quadruplex G , DNA/química , Óxidos , Compostos de Manganês , OligonucleotídeosRESUMO
BACKGROUND: Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored. METHODS: Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold. RESULTS: Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10-15) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10-46). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74). CONCLUSIONS: Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.
Assuntos
Estratificação de Risco Genético , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Teorema de Bayes , Estudo de Associação Genômica Ampla , Incerteza , Medição de Risco , Fatores de Risco , Predisposição Genética para DoençaRESUMO
BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Fumantes , Estudo de Associação Genômica Ampla , Projetos de Pesquisa , Fumar/efeitos adversosRESUMO
BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Epigênese Genética , Biomarcadores , Ilhas de CpGRESUMO
Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE: The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.
Assuntos
Neoplasias Pulmonares , Produtos do Tabaco , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Carcinógenos/toxicidade , Carcinogênese , Fatores de Transcrição , Fumar/efeitos adversosRESUMO
BACKGROUND: Epigenetic alterations are a near-universal feature of human malignancy and have been detected in malignant cells as well as in easily accessible specimens such as blood and urine. These findings offer promising applications in cancer detection, subtyping, and treatment monitoring. However, much of the current evidence is based on findings in retrospective studies and may reflect epigenetic patterns that have already been influenced by the onset of the disease. METHODS: Studying breast cancer, we established genome-scale DNA methylation profiles of prospectively collected buffy coat samples (n = 702) from a case-control study nested within the EPIC-Heidelberg cohort using reduced representation bisulphite sequencing (RRBS). RESULTS: We observed cancer-specific DNA methylation events in buffy coat samples. Increased DNA methylation in genomic regions associated with SURF6 and REXO1/CTB31O20.3 was linked to the length of time to diagnosis in the prospectively collected buffy coat DNA from individuals who subsequently developed breast cancer. Using machine learning methods, we piloted a DNA methylation-based classifier that predicted case-control status in a held-out validation set with 76.5% accuracy, in some cases up to 15 years before clinical diagnosis of the disease. CONCLUSIONS: Taken together, our findings suggest a model of gradual accumulation of cancer-associated DNA methylation patterns in peripheral blood, which may be detected long before clinical manifestation of cancer. Such changes may provide useful markers for risk stratification and, ultimately, personalized cancer prevention.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Estudos de Casos e Controles , Estudos Prospectivos , Estudos Retrospectivos , Metilação de DNA , Proteínas NuclearesRESUMO
INTRODUCTION: Mosaic chromosomal alterations (mCAs) detected in white blood cells represent a type of clonal hematopoiesis (CH) that is understudied compared with CH-related somatic mutations. A few recent studies indicated their potential link with nonhematological cancers, especially lung cancer. METHODS: In this study, we investigated the association between mCAs and lung cancer using the high-density genotyping data from the OncoArray study of INTEGRAL-ILCCO, the largest single genetic study of lung cancer with 18,221 lung cancer cases and 14,825 cancer-free controls. RESULTS: We identified a comprehensive list of autosomal mCAs, ChrX mCAs, and mosaic ChrY (mChrY) losses from these samples. Autosomal mCAs were detected in 4.3% of subjects, in addition to ChrX mCAs in 3.6% of females and mChrY losses in 9.6% of males. Multivariable logistic regression analysis indicated that the presence of autosomal mCAs in white blood cells was associated with an increased lung cancer risk after adjusting for key confounding factors, including age, sex, smoking status, and race. This association was mainly driven by a specific type of mCAs: copy-neutral loss of heterozygosity on autosomal chromosomes. The association between autosome copy-neutral loss of heterozygosity and increased risk of lung cancer was further confirmed in two major histologic subtypes, lung adenocarcinoma and squamous cell carcinoma. In addition, we observed a significant increase of ChrX mCAs and mChrY losses in smokers compared with nonsmokers and racial differences in certain types of mCA events. CONCLUSIONS: Our study established a link between mCAs in white blood cells and increased risk of lung cancer.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Masculino , Feminino , Humanos , Neoplasias Pulmonares/genética , Aberrações Cromossômicas , Carcinoma de Células Escamosas/genética , Estudos de Coortes , Fumar/efeitos adversosRESUMO
Background: Next generation sequencing (NGS) has become indispensable for diagnosis, risk stratification, prognostication, and monitoring of response in patients with myeloid neoplasias. Guidelines require bone marrow evaluations for the above, which are often not performed outside of clinical trials, indicating a need for surrogate samples. Methods: Myeloid NGS analyses (40 genes and 29 fusion drivers) of 240 consecutive, non-selected, prospectively collected, paired bone marrow/peripheral blood samples were compared. Findings: Very strong correlation (r = 0.91, p < 0.0001), high concordance (99.6%), sensitivity (98.8%), specificity (99.9%), positive predictive value (99.8%), and negative predictive value (99.6%) between NGS analyses of paired samples was observed. A total of 9/1321 (0.68%) detected mutations were discordant, 8 of which had a variant allele frequency (VAF) ≤ 3.7%. VAFs between peripheral blood and bone marrow samples were very strongly correlated in the total cohort (r = 0.93, p = 0.0001) and in subgroups without circulating blasts (r = 0.92, p < 0.0001) or with neutropenia (r = 0.88, p < 0.0001). There was a weak correlation between the VAF of a detected mutation and the blast count in either the peripheral blood (r = 0.19) or the bone marrow (r = 0.11). Interpretation: Peripheral blood samples can be used to molecularly classify and monitor myeloid neoplasms via NGS without loss of sensitivity/specificity, even in the absence of circulating blasts or in neutropenic patients.
RESUMO
Changes in DNA methylation identified by epigenome-wide association studies (EWAS) have been recently linked to increased lung cancer risk. However, the cellular effects of these differentially methylated positions (DMPs) are often unclear. Therefore, we investigated top differentially methylated positions identified from an EWAS study. This included a putative regulatory region of NHLRC1. Hypomethylation of this gene was recently linked with decreased survival rates in lung cancer patients. HumanMethylation450 BeadChip array (450K) analysis was performed on 66 lung cancer case-control pairs from the European Prospective Investigation into Cancer and Nutrition Heidelberg lung cancer EWAS (EPIC HD) cohort. DMPs identified in these pre-diagnostic blood samples were then investigated for differential DNA methylation in lung tumor versus adjacent normal lung tissue from The Cancer Genome Atlas (TCGA) and replicated in two independent lung tumor versus adjacent normal tissue replication sets with MassARRAY. The EPIC HD top hypermethylated DMP cg06646708 was found to be a hypomethylated region in multiple data sets of lung tumor versus adjacent normal tissue. Hypomethylation within this region caused increased mRNA transcription of the closest gene NHLRC1 in lung tumors. In functional assays, we demonstrate attenuated proliferation, viability, migration, and invasion upon NHLRC1 knock-down in lung cancer cells. Furthermore, diminished AKT phosphorylation at serine 473 causing expression of pro-apoptotic AKT-repressed genes was detected in these knock-down experiments. In conclusion, this study demonstrates the powerful potential for discovery of novel functional mechanisms in oncogenesis based on EWAS DNA methylation data. NHLRC1 holds promise as a new prognostic biomarker for lung cancer survival and prognosis, as well as a target for novel treatment strategies in lung cancer patients.
Assuntos
Epigênese Genética , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Biomarcadores , Ilhas de CpG , Metilação de DNA , Epigenoma , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/genética , Estudos Prospectivos , RNA Mensageiro , SerinaRESUMO
To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Proteínas de Ligação a RNA/genéticaRESUMO
Limited efforts have been made in assessing the effect of genome-wide profiling of RNA splicing-related variation on lung cancer risk. In the present study, we first identified RNA splicing-related genetic variants linked to lung cancer in a genome-wide profiling analysis and then conducted a two-stage (discovery and replication) association study in populations of European ancestry. Discovery and validation were conducted sequentially with a total of 29,266 cases and 56,450 controls from both the Transdisciplinary Research in Cancer of the Lung and the International Lung Cancer Consortium as well as the OncoArray database. For those variants identified as significant in the two datasets, we further performed stratified analyses by smoking status and histological type and investigated their effects on gene expression and potential regulatory mechanisms. We identified three genetic variants significantly associated with lung cancer risk: rs329118 in JADE2 (P = 8.80E-09), rs2285521 in GGA2 (P = 4.43E-08), and rs198459 in MYRF (P = 1.60E-06). The combined effects of all three SNPs were more evident in lung squamous cell carcinomas (P = 1.81E-08, P = 6.21E-08, and P = 7.93E-04, respectively) than in lung adenocarcinomas and in ever smokers (P = 9.80E-05, P = 2.70E-04, and P = 2.90E-05, respectively) than in never smokers. Gene expression quantitative trait analysis suggested a role for the SNPs in regulating transcriptional expression of the corresponding target genes. In conclusion, we report that three RNA splicing-related genetic variants contribute to lung cancer susceptibility in European populations. However, additional validation is needed, and specific splicing mechanisms of the target genes underlying the observed associations also warrants further exploration.
RESUMO
INTRODUCTION: Although genome-wide association studies have been conducted to investigate genetic variation of lung tumorigenesis, little is known about gene-gene (G × G) interactions that may influence the risk of non-small cell lung cancer (NSCLC). METHODS: Leveraging a total of 445,221 European-descent participants from the International Lung Cancer Consortium OncoArray project, Transdisciplinary Research in Cancer of the Lung and UK Biobank, we performed a large-scale genome-wide G × G interaction study on European NSCLC risk by a series of analyses. First, we used BiForce to evaluate and rank more than 58 billion G × G interactions from 340,958 single-nucleotide polymorphisms (SNPs). Then, the top interactions were further tested by demographically adjusted logistic regression models. Finally, we used the selected interactions to build lung cancer screening models of NSCLC, separately, for never and ever smokers. RESULTS: With the Bonferroni correction, we identified eight statistically significant pairs of SNPs, which predominantly appeared in the 6p21.32 and 5p15.33 regions (e.g., rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.17, p = 6.57 × 10-13; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.17, p = 2.43 × 10-13; rs2858859HLA-DQA1 and rs9275572HLA-DQA2, ORinteraction = 1.15, p = 2.84 × 10-13; rs2853668TERT and rs62329694CLPTM1L, ORinteraction = 0.73, p = 2.70 × 10-13). Notably, even with much genetic heterogeneity across ethnicities, three pairs of SNPs in the 6p21.32 region identified from the European-ancestry population remained significant among an Asian population from the Nanjing Medical University Global Screening Array project (rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.13, p = 0.008; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.11, p = 5.23 × 10-4; rs3135369BTNL2 and rs9271300HLA-DQA1, ORinteraction = 0.89, p = 0.006). The interaction-empowered polygenetic risk score that integrated classical polygenetic risk score and G × G information score was remarkable in lung cancer risk stratification. CONCLUSIONS: Important G × G interactions were identified and enriched in the 5p15.33 and 6p21.32 regions, which may enhance lung cancer screening models.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Detecção Precoce de Câncer , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility. AIM: To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent. METHODS: Odds ratios (OR) were estimated for genomic variants assigned to the Wnt agonist and the antagonistic genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer, at which other previously identified SNPs that have been robustly associated with lung cancer risk could also enter the model. Furthermore, decision trees were created to investigate variant × variant interaction. All analyses were performed for overall lung cancer and for subgroups. RESULTS: No genome-wide significant association of AhR/Wnt-genes with overall lung cancer was observed, but within the subgroups of ever smokers (e.g., maker rs2722278 SFRP4; OR = 1.20; 95% CI 1.13-1.27; p = 5.6 × 10-10) and never smokers (e.g., maker rs1133683 Axin2; OR = 1.27; 95% CI 1.19-1.35; p = 1.0 × 10-12). Although predictability is poor, AhR/Wnt-variants are unexpectedly overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkably, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants. CONCLUSIONS: The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , RNA Neoplásico/genética , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Genótipo , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/metabolismo , Via de Sinalização WntRESUMO
Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry. Three low-frequency variants (minor allele frequency < 0.05), rs17662871 [odds ratio (OR) = 0.71, P = 4.29×10-8); rs79942605 (OR = 2.17, P = 2.81×10-8) and rs208908 (OR = 0.70, P = 4.54×10-8) were identified with different risk effect of lung cancer between men and women. Further expression quantitative trait loci and functional annotation analysis suggested rs208908 affects lung cancer risk through differential regulation of Coxsackie virus and adenovirus receptor gene expression in lung tissues between men and women. Our study is one of the first studies to provide novel insights about the genetic and molecular basis for sex disparity in lung cancer development.
Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Pulmão , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Masculino , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer.Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays.We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Assuntos
Fibrose Cística , Neoplasias Pulmonares , Estudos de Casos e Controles , Fibrose Cística/genética , Metilação de DNA , Epigênese Genética , Células Epiteliais , Humanos , Inflamação/genética , Pulmão , Neoplasias Pulmonares/genética , Placofilinas/genética , Gêmeos Monozigóticos/genéticaRESUMO
Genome-wide association studies (GWAS) have identified SNPs linked with lung cancer risk. Our aim was to discover the genes, non-coding RNAs, and regulatory elements within GWAS-identified risk regions that are deregulated in non-small cell lung carcinoma (NSCLC) to identify novel, clinically targetable genes and mechanisms in carcinogenesis. A targeted bisulphite-sequencing approach was used to comprehensively investigate DNA methylation changes occurring within lung cancer risk regions in 17 NSCLC and adjacent normal tissue pairs. We report differences in differentially methylated regions between adenocarcinoma and squamous cell carcinoma. Among the minimal regions found to be differentially methylated in at least 50% of the patients, 7 candidates were replicated in 2 independent cohorts (n = 27 and n = 87) and the potential of 6 as methylation-dependent regulatory elements was confirmed by functional assays. This study contributes to understanding the pathways implicated in lung cancer initiation and progression, and provides new potential targets for cancer treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Ilhas de CpG , Metilação de DNA , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sequências Reguladoras de Ácido NucleicoRESUMO
Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes rel to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.
Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias do Sistema Digestório/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alelos , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias do Sistema Digestório/metabolismo , Neoplasias do Sistema Digestório/patologia , Genótipo , Humanos , Razão de Chances , Transdução de SinaisRESUMO
Lung cancer is the leading cause of cancer-related death globally. An improved risk stratification strategy can increase efficiency of low-dose CT (LDCT) screening. Here we assessed whether individual's genetic background has clinical utility for risk stratification in the context of LDCT screening. On the basis of 13,119 patients with lung cancer and 10,008 controls with European ancestry in the International Lung Cancer Consortium, we constructed a polygenic risk score (PRS) via 10-fold cross-validation with regularized penalized regression. The performance of risk model integrating PRS, including calibration and ability to discriminate, was assessed using UK Biobank data (N = 335,931). Absolute risk was estimated on the basis of age-specific lung cancer incidence and all-cause mortality as competing risk. To evaluate its potential clinical utility, the PRS distribution was simulated in the National Lung Screening Trial (N = 50,772 participants). The lung cancer ORs for individuals at the top decile of the PRS distribution versus those at bottom 10% was 2.39 [95% confidence interval (CI) = 1.92-3.00; P = 1.80 × 10-14] in the validation set (P trend = 5.26 × 10-20). The OR per SD of PRS increase was 1.26 (95% CI = 1.20-1.32; P = 9.69 × 10-23) for overall lung cancer risk in the validation set. When considering absolute risks, individuals at different PRS deciles showed differential trajectories of 5-year and cumulative absolute risk. The age reaching the LDCT screening recommendation threshold can vary by 4 to 8 years, depending on the individual's genetic background, smoking status, and family history. Collectively, these results suggest that individual's genetic background may inform the optimal lung cancer LDCT screening strategy. SIGNIFICANCE: Three large-scale datasets reveal that, after accounting for risk factors, an individual's genetics can affect their lung cancer risk trajectory, thus may inform the optimal timing for LDCT screening.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Pulmonares/epidemiologia , Modelos Genéticos , Herança Multifatorial , Adulto , Fatores Etários , Idoso , Estudos de Casos e Controles , Detecção Precoce de Câncer/normas , Detecção Precoce de Câncer/estatística & dados numéricos , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Incidência , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Aprendizado de Máquina , Masculino , Programas de Rastreamento/normas , Programas de Rastreamento/estatística & dados numéricos , Anamnese , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Guias de Prática Clínica como Assunto , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Fumar/epidemiologia , Tomografia Computadorizada por Raios X/normas , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Reino Unido/epidemiologiaRESUMO
At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06, P = 2.70 × 10-4 ). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR = 1.28, 95% CI = 1.06-1.55, PMVMR = .011), and an inverse effect on lung adenocarcinoma (ORMVMR = 0.86, 95% CI = 0.77-0.96, PMVMR = .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR = 1.19, 95% CI = 1.01-1.40, PUVMR = .036), but this effect disappeared after adjustment of smoking (ORMVMR = 1.02, 95% CI = 0.90-1.16, PMVMR = .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.